// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/cpu/elementwise.h" #include "paddle/phi/api/ext/dispatch.h" #include "paddle/phi/backends/cpu/cpu_context.h" #include "paddle/phi/common/bfloat16.h" #include "paddle/phi/common/complex.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/kernels/impl/elementwise_kernel_impl.h" namespace phi { #define DEFINE_CPU_ELEMENTWISE_OP(name) \ template \ void name##RawKernel(const Context& dev_ctx, \ const DenseTensor& x, \ const DenseTensor& y, \ int axis, \ DenseTensor* out) { \ dev_ctx.template Alloc(out); \ if (x.dims() == y.dims()) { \ SameDimsElementwiseCompute>()( \ dev_ctx, x, y, out); \ } else { \ auto x_dims = x.dims(); \ auto y_dims = y.dims(); \ if (x_dims.size() >= y_dims.size()) { \ funcs::ElementwiseCompute, T>( \ dev_ctx, x, y, axis, funcs::name##Functor(), out); \ } else { \ funcs::ElementwiseCompute, T>( \ dev_ctx, x, y, axis, funcs::Inverse##name##Functor(), out); \ } \ } \ } template void DivideRawKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y, int axis, DenseTensor* out) { // allocate memory for out dev_ctx.template Alloc(out); if (x.dims() == y.dims() && std::is_floating_point::value) { SameDimsElementwiseCompute>()( dev_ctx, x, y, out); } else { auto x_dims = x.dims(); auto y_dims = y.dims(); if (x_dims.size() >= y_dims.size()) { funcs::ElementwiseCompute, T>( dev_ctx, x, y, axis, funcs::DivideFunctor(), out); } else { funcs::ElementwiseCompute, T>( dev_ctx, x, y, axis, funcs::InverseDivideFunctor(), out); } } } template void MaximumRawKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y, int axis, DenseTensor* out) { // allocate memory for out dev_ctx.template Alloc(out); funcs::ElementwiseCompute, T>( dev_ctx, x, y, axis, funcs::MaximumFunctor(), out); } template void MinimumRawKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y, int axis, DenseTensor* out) { // allocate memory for out dev_ctx.template Alloc(out); funcs::ElementwiseCompute, T>( dev_ctx, x, y, axis, funcs::MinimumFunctor(), out); } template void ModuloRawKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y, int axis, DenseTensor* out) { // allocate memory for out dev_ctx.template Alloc(out); auto x_dims = x.dims(); auto y_dims = y.dims(); if (x_dims.size() >= y_dims.size()) { funcs::ElementwiseCompute, T>( dev_ctx, x, y, axis, funcs::ModuloFunctor(), out); } else { funcs::ElementwiseCompute, T>( dev_ctx, x, y, axis, funcs::InverseModuloFunctor(), out); } } template void FloorDivideRawKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y, int axis, DenseTensor* out) { // allocate memory for out dev_ctx.template Alloc(out); auto x_dims = x.dims(); auto y_dims = y.dims(); if (x_dims.size() >= y_dims.size()) { funcs::ElementwiseCompute, T>( dev_ctx, x, y, axis, funcs::FloorDivideFunctor(), out); } else { funcs::ElementwiseCompute, T>( dev_ctx, x, y, axis, funcs::InverseFloorDivideFunctor(), out); } } template void ElementwisePowRawKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y, int axis, DenseTensor* out) { // allocate memory for out dev_ctx.template Alloc(out); funcs::ElementwiseCompute, T>( dev_ctx, x, y, axis, funcs::ElementwisePowFunctor(), out); } // Create the definition of Add DEFINE_CPU_ELEMENTWISE_OP(Add) // Create the definition of Subtract DEFINE_CPU_ELEMENTWISE_OP(Subtract) // Create the definition of Multiply DEFINE_CPU_ELEMENTWISE_OP(Multiply) } // namespace phi using complex64 = ::phi::dtype::complex; using complex128 = ::phi::dtype::complex; // NOTE(chenweihang): using bfloat16 will cause redefine with xpu bfloat16 // using bfloat16 = ::phi::dtype::bfloat16; PD_REGISTER_KERNEL( fmax, CPU, ALL_LAYOUT, phi::FMaxKernel, float, double, int, int64_t) {} PD_REGISTER_KERNEL( fmin, CPU, ALL_LAYOUT, phi::FMinKernel, float, double, int, int64_t) {} PD_REGISTER_KERNEL(add_raw, CPU, ALL_LAYOUT, phi::AddRawKernel, float, double, int16_t, int, int64_t, complex64, complex128) {} PD_REGISTER_KERNEL(subtract_raw, CPU, ALL_LAYOUT, phi::SubtractRawKernel, float, double, int16_t, int, int64_t, complex64, complex128, phi::dtype::bfloat16) {} PD_REGISTER_KERNEL(divide_raw, CPU, ALL_LAYOUT, phi::DivideRawKernel, float, double, int, int64_t, complex64, complex128) {} PD_REGISTER_KERNEL(multiply_raw, CPU, ALL_LAYOUT, phi::MultiplyRawKernel, float, double, int, int64_t, bool, complex64, complex128, phi::dtype::bfloat16) {} PD_REGISTER_KERNEL(maximum_raw, CPU, ALL_LAYOUT, phi::MaximumRawKernel, float, double, int, int64_t, phi::dtype::bfloat16) {} PD_REGISTER_KERNEL(minimum_raw, CPU, ALL_LAYOUT, phi::MinimumRawKernel, float, double, int, int64_t, phi::dtype::bfloat16) {} PD_REGISTER_KERNEL(modulo_raw, CPU, ALL_LAYOUT, phi::ModuloRawKernel, float, double, int, int64_t) {} PD_REGISTER_KERNEL(floor_divide_raw, CPU, ALL_LAYOUT, phi::FloorDivideRawKernel, int, int64_t) {} PD_REGISTER_KERNEL(elementwise_pow_raw, CPU, ALL_LAYOUT, phi::ElementwisePowRawKernel, float, double, int, int64_t) {}