# Paddle on Kubernetes:分布式训练 前一篇文章介绍了如何在Kubernetes集群上启动一个单机PaddlePaddle训练作业 (Job)。在这篇文章里,我们介绍如何在Kubernetes集群上进行分布式PaddlePaddle训练作业。关于PaddlePaddle的分布式训练,可以参考 [Cluster Training](https://github.com/baidu/Paddle/blob/develop/doc/cluster/opensource/cluster_train.md),本文利用Kubernetes的调度功能与容器编排能力,快速构建PaddlePaddle容器集群,进行分布式训练任务。 ## Kubernetes 基本概念 [*Kubernetes*](http://kubernetes.io/)是Google开源的容器集群管理系统,其提供应用部署、维护、 扩展机制等功能,利用Kubernetes能方便地管理跨机器运行容器化的应用。在介绍分布式训练之前,需要对[Kubernetes](http://kubernetes.io/)有一个基本的认识,下面先简要介绍一下本文用到的几个Kubernetes概念。 - [*Node*](http://kubernetes.io/docs/admin/node/) 表示一个Kubernetes集群中的一个工作节点,这个节点可以是物理机或者虚拟机,Kubernetes集群就是由node节点与master节点组成的。 - [*Pod*](http://kubernetes.io/docs/user-guide/pods/) 是一组(一个或多个)容器,pod是Kubernetes的最小调度单元,一个pod中的所有容器会被调度到同一个node上。Pod中的容器共享NET,PID,IPC,UTS等Linux namespace。由于容器之间共享NET namespace,所以它们使用同一个IP地址,可以通过*localhost*互相通信。不同pod之间可以通过IP地址访问。 - [*Job*](http://kubernetes.io/docs/user-guide/jobs/) 是Kubernetes上运行的作业,一次作业称为一个job,通常每个job包括一个或者多个pods。 - [*Volume*](http://kubernetes.io/docs/user-guide/volumes/) 存储卷,是pod内的容器都可以访问的共享目录,也是容器与node之间共享文件的方式,因为容器内的文件都是暂时存在的,当容器因为各种原因被销毁时,其内部的文件也会随之消失。通过volume,就可以将这些文件持久化存储。Kubernetes支持多种volume,例如hostPath(宿主机目录),gcePersistentDisk,awsElasticBlockStore等。 - [*Namespaces*](http://kubernetes.io/docs/user-guide/volumes/) 命名空间,在kubernetes中创建的所有资源对象(例如上文的pod,job)等都属于一个命名空间,在同一个命名空间中,资源对象的名字是唯一的,不同空间的资源名可以重复,命名空间主要为了对象进行逻辑上的分组便于管理。本文只使用了默认命名空间。 ## 整体方案 ### 部署Kubernetes集群 首先,我们需要拥有一个Kubernetes集群,在这个集群中所有node与pod都可以互相通信。关于Kubernetes集群搭建,可以参考[官方文档](http://kubernetes.io/docs/getting-started-guides/kubeadm/),在以后的文章中我们也会介绍AWS上搭建的方案。本文假设大家能找到几台物理机,并且可以按照官方文档在上面部署Kubernetes。在本文的环境中,Kubernetes集群中所有node都挂载了一个*mfs*(分布式文件系统)共享目录,我们通过这个目录来存放训练文件与最终输出的模型。在训练之前,用户将配置与训练数据切分好放在mfs目录中,训练时,程序从此目录拷贝文件到容器内进行训练,将结果保存到此目录里。整体的结果图如下: ![paddle on kubernetes结构图](k8s-paddle-arch.png) ### 使用 Job 我们使用Kubernetes中的job这个概念来代表一次分布式训练。Job表示一次性作业,在作业完成后,Kubernetes会销毁job产生的容器并且释放相关资源。 在Kubernetes中,可以通过编写一个YAML文件,来描述这个job,在这个文件中,主要包含了一些配置信息,例如PaddlePaddle的节点个数,`paddle pserver`开放的端口个数与端口号,使用的网卡设备等,这些信息通过环境变量的形式传递给容器内的程序使用。 在一次分布式训练中,用户确定好本次训练需要的PaddlePaddle节点个数,将切分好的训练数据与配置文件上传到mfs共享目录中。然后编写这次训练的job YAML文件,提交给Kubernetes集群创建并开始作业。 ### 创建PaddlePaddle节点 当Kubernetes master收到请求,解析完YAML文件后,会创建出多个pod(个数为PaddlePaddle节点数),Kubernetes会把这些pod调度到集群的node上运行。一个pod就代表一个PaddlePaddle节点,当pod被成功分配到一台物理/虚拟机上后,Kubernetes会启动pod内的容器,这个容器会根据YAML文件中的环境变量,启动`paddle pserver`与`paddle train`进程。 ### 启动训练 在容器启动后,会通过脚本来启动这次分布式训练,我们知道`paddle train`进程启动时需要知道其他节点的IP地址以及本节点的trainer_id,由于Paddle本身不提供类似服务发现的功能,所以在本文的启动脚本中,每个节点会根据job name向Kubernetes apiserver查询这个job对应的所有pod信息(Kubernetes默认会在每个容器的环境变量中写入apiserver的地址)。 根据这些pod信息,就可以通过某种方式,为每个pod分配一个唯一的trainer_id。本文把所有pod的IP地址进行排序,将顺序作为每个PaddlePaddle节点的trainer_id。启动脚本的工作流程大致如下: 1. 查询Kubernetes apiserver获取pod信息,根据IP分配trainer_id 1. 从mfs共享目录中拷贝训练文件到容器内 1. 根据环境变量,解析出`paddle pserver`与`paddle train`的启动参数,启动进程 1. 训练时,PaddlePaddle会自动将结果保存在trainer_id为0的节点上,将输出路径设置为mfs目录,保存输出的文件 ## 搭建过程 根据前文的描述,要在已有的Kubernetes集群上进行PaddlePaddle的分布式训练,主要分为以下几个步骤: 1. 制作PaddlePaddle镜像 1. 将训练文件与切分好的数据上传到共享存储 1. 编写本次训练的YAML文件,创建一个Kubernetes job 1. 训练结束后查看输出结果 下面就根据这几个步骤分别介绍。 ### 制作镜像 PaddlePaddle镜像需要提供`paddle pserver`与`paddle train`进程的运行环境,用这个镜像创建的容器需要有以下两个功能: - 拷贝训练文件到容器内 - 生成`paddle pserver`与`paddle train`进程的启动参数,并且启动训练 因为官方镜像 `paddledev/paddle:cpu-latest` 内已经包含PaddlePaddle的执行程序但是还没上述功能,所以我们可以在这个基础上,添加启动脚本,制作新镜像来完成以上的工作。镜像的*Dockerfile*如下: ```Dockerfile FROM paddledev/paddle:cpu-latest MAINTAINER zjsxzong89@gmail.com COPY start.sh /root/ COPY start_paddle.py /root/ CMD ["bash"," -c","/root/start.sh"] ``` [`start.sh`](start.sh)文件拷贝训练文件到容器内,然后执行[`start_paddle.py`](start_paddle.py)脚本启动训练,前文提到的获取其他节点IP地址,分配`trainer_id`等都在`start_paddle.py`脚本中完成。 `start_paddle.py`脚本开始时,会先进行参数的初始化与解析。 ```python parser = argparse.ArgumentParser(prog="start_paddle.py", description='simple tool for k8s') args, train_args_list = parser.parse_known_args() train_args = refine_unknown_args(train_args_list) train_args_dict = dict(zip(train_args[:-1:2], train_args[1::2])) podlist = getPodList() ``` 然后通过函数`getPodList()`访问Kubernetes的接口来查询此job对应的所有pod信息。当所有pod都处于running状态(容器运行都运行)时,再通过函数`getIdMap(podlist)`获取trainer_id。 ```python podlist = getPodList() # need to wait until all pods are running while not isPodAllRunning(podlist): time.sleep(10) podlist = getPodList() idMap = getIdMap(podlist) ``` 在函数`getIdMap(podlist)`内部,我们通过读取`podlist`中每个pod的IP地址,将IP排序生成的序号作为trainer_id。 ```python def getIdMap(podlist): ''' generate tainer_id by ip ''' ips = [] for pod in podlist["items"]: ips.append(pod["status"]["podIP"]) ips.sort() idMap = {} for i in range(len(ips)): idMap[ips[i]] = i return idMap ``` 在得到`idMap`后,通过函数`startPaddle(idMap, train_args_dict)`构造`paddle pserver`与`paddle train`的启动参数并执行进程。 在函数`startPaddle`中,最主要的工作就是解析出`paddle pserver`与`paddle train`的启动参数。例如`paddle train`参数的解析,解析环境变量得到`PADDLE_NIC`,`PADDLE_PORT`,`PADDLE_PORTS_NUM`等参数,然后通过自身的IP地址在`idMap`中获取`trainerId`。 ```python program = 'paddle train' args = " --nics=" + PADDLE_NIC args += " --port=" + str(PADDLE_PORT) args += " --ports_num=" + str(PADDLE_PORTS_NUM) args += " --comment=" + "paddle_process_by_paddle" ip_string = "" for ip in idMap.keys(): ip_string += (ip + ",") ip_string = ip_string.rstrip(",") args += " --pservers=" + ip_string args_ext = "" for key, value in train_args_dict.items(): args_ext += (' --' + key + '=' + value) localIP = socket.gethostbyname(socket.gethostname()) trainerId = idMap[localIP] args += " " + args_ext + " --trainer_id=" + \ str(trainerId) + " --save_dir=" + JOB_PATH_OUTPUT ``` 使用 `docker build` 构建镜像: ```bash docker build -t your_repo/paddle:mypaddle . ``` 然后将构建成功的镜像上传到镜像仓库。 ```bash docker push your_repo/paddle:mypaddle ``` ### 上传训练文件 本文使用Paddle官方的[recommendation demo](http://www.paddlepaddle.org/doc/demo/index.html#recommendation)作为这次训练的内容,我们将训练文件与数据放在一个job name命名的目录中,上传到mfs共享存储。完成后mfs上的文件内容大致如下: ```bash [root@paddle-kubernetes-node0 mfs]# tree -d . └── paddle-cluster-job ├── data │   ├── 0 │   │ │   ├── 1 │   │ │   └── 2 ├── output └── recommendation ``` 目录中paddle-cluster-job是本次训练对应的job name,本次训练要求有3个Paddle节点,在paddle-cluster-job/data目录中存放切分好的数据,文件夹0,1,2分别代表3个节点的trainer_id。recommendation文件夹内存放训练文件,output文件夹存放训练结果与日志。 ### 创建Job Kubernetes可以通过YAML文件来创建相关对象,然后可以使用命令行工具创建job。 Job YAML文件描述了这次训练使用的Docker镜像,需要启动的节点个数以及 `paddle pserver`与 `paddle train`进程启动的必要参数,也描述了容器需要使用的存储卷挂载的情况。YAML文件中各个字段的具体含义,可以查看[Kubernetes Job API](http://kubernetes.io/docs/api-reference/batch/v1/definitions/#_v1_job)。例如,本次训练的YAML文件可以写成: ```yaml apiVersion: batch/v1 kind: Job metadata: name: paddle-cluster-job spec: parallelism: 3 completions: 3 template: metadata: name: paddle-cluster-job spec: volumes: - name: jobpath hostPath: path: /home/work/mfs containers: - name: trainer image: your_repo/paddle:mypaddle command: ["bin/bash", "-c", "/root/start.sh"] env: - name: JOB_NAME value: paddle-cluster-job - name: JOB_PATH value: /home/jobpath - name: JOB_NAMESPACE value: default - name: TRAIN_CONFIG_DIR value: recommendation - name: CONF_PADDLE_NIC value: eth0 - name: CONF_PADDLE_PORT value: "7164" - name: CONF_PADDLE_PORTS_NUM value: "2" - name: CONF_PADDLE_PORTS_NUM_SPARSE value: "2" - name: CONF_PADDLE_GRADIENT_NUM value: "3" volumeMounts: - name: jobpath mountPath: /home/jobpath restartPolicy: Never ``` 文件中,`metadata`下的`name`表示这个job的名字。`parallelism,completions`字段表示这个job会同时开启3个Paddle节点,成功训练且退出的pod数目为3时,这个job才算成功结束。然后申明一个存储卷`jobpath`,代表宿主机目录`/home/work/mfs`,在对容器的描述`containers`字段中,将此目录挂载为容器的`/home/jobpath`目录,这样容器的`/home/jobpath`目录就成为了共享存储,放在这个目录里的文件其实是保存到了mfs上。 `env`字段表示容器的环境变量,我们将`paddle`运行的一些参数通过这种方式传递到容器内。 `JOB_PATH`表示共享存储挂载的路径,`JOB_NAME`表示job名字,`TRAIN_CONFIG_DIR`表示本次训练文件所在目录,这三个变量组合就可以找到本次训练需要的文件路径。 `CONF_PADDLE_NIC`表示`paddle pserver`进程需要的`--nics`参数,即网卡名 `CONF_PADDLE_PORT`表示`paddle pserver`的`--port`参数,`CONF_PADDLE_PORTS_NUM`则表示稠密更新的端口数量,也就是`--ports_num`参数。 `CONF_PADDLE_PORTS_NUM_SPARSE`表示稀疏更新的端口数量,也就是`--ports_num_for_sparse`参数。 `CONF_PADDLE_GRADIENT_NUM`表示训练节点数量,即`--num_gradient_servers`参数 编写完YAML文件后,可以使用Kubernetes的命令行工具创建job。 ```bash kubectl create -f job.yaml ``` 创建成功后,Kubernetes就会创建3个pod作为PaddlePaddle节点然后拉取镜像,启动容器开始训练。 ### 查看输出 在训练过程中,可以在共享存储上查看输出的日志和模型,例如output目录下就存放了输出结果。注意node_0,node_1,node_2这几个目录表示Paddle节点与trainer_id,并不是Kubernetes中的node概念。 ```bash [root@paddle-kubernetes-node0 output]# tree -d . ├── node_0 │   ├── server.log │   └── train.log ├── node_1 │   ├── server.log │   └── train.log ├── node_2 ...... ├── pass-00002 │   ├── done │   ├── ___embedding_0__.w0 │   ├── ___embedding_1__.w0 ...... ``` 我们可以通过日志查看容器训练的情况,例如: ```bash [root@paddle-kubernetes-node0 node_0]# cat train.log I1116 09:10:17.123121 50 Util.cpp:155] commandline: /usr/local/bin/../opt/paddle/bin/paddle_trainer --nics=eth0 --port=7164 --ports_num=2 --comment=paddle_process_by_paddle --pservers=192.168.129.66,192.168.223.143,192.168.129.71 --ports_num_for_sparse=2 --config=./trainer_config.py --trainer_count=4 --num_passes=10 --use_gpu=0 --log_period=50 --dot_period=10 --saving_period=1 --local=0 --trainer_id=0 --save_dir=/home/jobpath/paddle-cluster-job/output I1116 09:10:17.123440 50 Util.cpp:130] Calling runInitFunctions I1116 09:10:17.123764 50 Util.cpp:143] Call runInitFunctions done. [WARNING 2016-11-16 09:10:17,227 default_decorators.py:40] please use keyword arguments in paddle config. [INFO 2016-11-16 09:10:17,239 networks.py:1282] The input order is [movie_id, title, genres, user_id, gender, age, occupation, rating] [INFO 2016-11-16 09:10:17,239 networks.py:1289] The output order is [__regression_cost_0__] I1116 09:10:17.392917 50 Trainer.cpp:170] trainer mode: Normal I1116 09:10:17.613910 50 PyDataProvider2.cpp:257] loading dataprovider dataprovider::process I1116 09:10:17.680917 50 PyDataProvider2.cpp:257] loading dataprovider dataprovider::process I1116 09:10:17.681543 50 GradientMachine.cpp:134] Initing parameters.. I1116 09:10:18.012390 50 GradientMachine.cpp:141] Init parameters done. I1116 09:10:18.018641 50 ParameterClient2.cpp:122] pserver 0 192.168.129.66:7164 I1116 09:10:18.018950 50 ParameterClient2.cpp:122] pserver 1 192.168.129.66:7165 I1116 09:10:18.019069 50 ParameterClient2.cpp:122] pserver 2 192.168.223.143:7164 I1116 09:10:18.019492 50 ParameterClient2.cpp:122] pserver 3 192.168.223.143:7165 I1116 09:10:18.019716 50 ParameterClient2.cpp:122] pserver 4 192.168.129.71:7164 I1116 09:10:18.019836 50 ParameterClient2.cpp:122] pserver 5 192.168.129.71:7165 ```