# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .optimizer import Optimizer from ..fluid import core from ..fluid import framework from ..fluid.framework import Variable __all__ = [] class Adagrad(Optimizer): r""" The Adaptive Gradient optimizer (Adagrad for short) use an optimization described in paper: `Adaptive Subgradient Methods for Online Learning and Stochastic Optimization `_. The parameter ``param_out`` update rule with gradient ``grad``: .. math:: moment\_out &= moment + grad * grad param\_out &= param - \frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon} The original paper does not have the ``epsilon`` attribute. It is added here in our implementation as also proposed `Per-parameter adaptive learning rate methods `_ for numerical stability to avoid the division by zero error. Args: learning_rate (float|Tensor): The learning rate used to update ``Parameter``. It can be a float value or a ``Variable`` with a float type. epsilon (float, optional): A small float value for numerical stability. The default value is 1e-06. parameters (list|tuple, optional): List/Tuple of ``Tensor`` to update to minimize ``loss``. This parameter is required in dygraph mode. And you can specify different options for different parameter groups such as the learning rate, weight decay, etc, then the parameters are list of dict. Note that the learning_rate in paramter groups represents the scale of base learning_rate. The default value is None in static mode, at this time all parameters will be updated. weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization. It canbe a float value as coeff of L2 regularization or :ref:`api_paddle_regularizer_L1Decay`, :ref:`api_paddle_regularizer_L2Decay`. If a parameter has set regularizer using :ref:`api_paddle_fluid_param_attr_aramAttr` already, the regularization setting here in optimizer will be ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect. Default None, meaning there is no regularization. grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of some derived class of ``GradientClipBase`` . There are three cliping strategies, ClipGradByGlobalNorm, ClipGradByNorm and ClipGradByValue. Default None, meaning there is no gradient clipping. name (str, optional): Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. The default value is None. initial_accumulator_value (float, optional): Initial value for moment accumulator. The default value is 0.0. Examples: .. code-block:: python import paddle import numpy as np inp = paddle.rand(shape=[10, 10]) linear = paddle.nn.Linear(10, 10) out = linear(inp) loss = paddle.mean(out) adagrad = paddle.optimizer.Adagrad(learning_rate=0.1, parameters=linear.parameters()) out.backward() adagrad.step() adagrad.clear_grad() #Note that the learning_rate of linear_2 is 0.01. linear_1 = paddle.nn.Linear(10, 10) linear_2 = paddle.nn.Linear(10, 10) inp = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1) out = linear_1(inp) out = linear_2(out) loss = paddle.mean(out) adagrad = paddle.optimizer.Adagrad( learning_rate=0.1, parameters=[{ 'params': linear_1.parameters() }, { 'params': linear_2.parameters(), 'weight_decay': 0.001, 'learning_rate': 0.1, }], weight_decay=0.01) out.backward() adagrad.step() adagrad.clear_grad() """ _moment_acc_str = "moment" def __init__(self, learning_rate, epsilon=1.0e-6, parameters=None, weight_decay=None, grad_clip=None, name=None, initial_accumulator_value=0.0): assert learning_rate is not None assert epsilon is not None super(Adagrad, self).__init__(learning_rate=learning_rate, parameters=parameters, weight_decay=weight_decay, grad_clip=grad_clip, name=name) self.type = "adagrad" self._epsilon = epsilon self.initial_accumulator_value = initial_accumulator_value self._default_dict = { 'epsilon': epsilon, 'initial_accumulator_value': initial_accumulator_value, } def _create_accumulators(self, block, parameters): assert isinstance(block, framework.Block) if isinstance(parameters, dict): parameters = self._update_param_group(parameters) for p in parameters: self._add_accumulator(self._moment_acc_str, p, fill_value=self.initial_accumulator_value) def _append_optimize_op(self, block, param_and_grad): assert isinstance(block, framework.Block) if isinstance(param_and_grad, dict): param_and_grad = self._update_param_group(param_and_grad) moment_acc = self._get_accumulator(self._moment_acc_str, param_and_grad[0]) # Create the adagrad optimizer op adagrad_op = block.append_op(type=self.type, inputs={ "Param": param_and_grad[0], "Grad": param_and_grad[1], "Moment": moment_acc, "LearningRate": self._create_param_lr(param_and_grad) }, outputs={ "ParamOut": param_and_grad[0], "MomentOut": moment_acc }, attrs={"epsilon": self._epsilon}, stop_gradient=True) return adagrad_op def _update_param_group(self, parameters): self._epsilon = parameters.get('epsilon', self._default_dict['epsilon']) self.initial_accumulator_value = parameters.get( 'initial_accumulator_value', self._default_dict['initial_accumulator_value']) parameters = parameters.get('params') return parameters