/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include "paddle/fluid/operators/bce_loss_op.h" #include "paddle/fluid/operators/elementwise/elementwise_op_impl.cu.h" #include "paddle/fluid/operators/math.h" #include "paddle/fluid/platform/device/gpu/gpu_launch_config.h" #include "paddle/fluid/platform/device/gpu/gpu_primitives.h" #include "paddle/phi/core/hostdevice.h" namespace paddle { namespace operators { template struct BCELossFunctor { T one; T neg_100; HOSTDEVICE inline BCELossFunctor() { one = static_cast(1.0f); neg_100 = static_cast(-100.); } HOSTDEVICE inline T operator()(const T x, const T label) const { PADDLE_ENFORCE( (x >= static_cast(0)) && (x <= one), "Input is expected to be within the interval [0, 1], but recieved %f.", x); T term1 = max(real_log(x), neg_100); T term2 = max(real_log(one - x), neg_100); return (((label - one) * term2) - (label * term1)); } }; template struct BCELossGradFunctor { T one; T eps; HOSTDEVICE inline BCELossGradFunctor() { one = static_cast(1.0f); eps = static_cast(1e-12); } HOSTDEVICE inline T operator()(const T x, const T label, const T dout) const { T term1 = max((one - x) * x, eps); return (dout * (x - label) / term1); } }; using Tensor = framework::Tensor; template class BCELossCUDAKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto* x = ctx.Input("X"); auto* labels = ctx.Input("Label"); auto* out = ctx.Output("Out"); out->mutable_data(ctx.GetPlace()); std::vector ins = {x, labels}; std::vector outs = {out}; auto& dev_ctx = ctx.template device_context(); auto functor = BCELossFunctor(); paddle::operators::LaunchSameDimsElementwiseCudaKernel(dev_ctx, ins, &outs, functor); } }; template class BCELossGradCUDAKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto* x = ctx.Input("X"); auto* labels = ctx.Input("Label"); auto* dout = ctx.Input(framework::GradVarName("Out")); auto* dx = ctx.Output(framework::GradVarName("X")); dx->mutable_data(ctx.GetPlace()); std::vector ins = {x, labels, dout}; std::vector outs = {dx}; auto& dev_ctx = ctx.template device_context(); auto functor = BCELossGradFunctor(); paddle::operators::LaunchSameDimsElementwiseCudaKernel(dev_ctx, ins, &outs, functor); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OP_CUDA_KERNEL( bce_loss, ops::BCELossCUDAKernel, ops::BCELossCUDAKernel); REGISTER_OP_CUDA_KERNEL( bce_loss_grad, ops::BCELossGradCUDAKernel, ops::BCELossGradCUDAKernel);