# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import numpy as np import unittest import sys import paddle import paddle.fluid as fluid import paddle.fluid.compiler as compiler paddle.enable_static() SEED = 2021 @unittest.skipIf(not paddle.is_compiled_with_ipu(), "core is not compiled with IPU") class TestSGD(unittest.TestCase): def _test_sgd(self, run_ipu=True): scope = fluid.core.Scope() main_prog = paddle.static.Program() startup_prog = paddle.static.Program() main_prog.random_seed = SEED startup_prog.random_seed = SEED np.random.seed(SEED) np_image = np.random.rand(1, 3, 10, 10).astype(np.float32) with fluid.scope_guard(scope): with paddle.static.program_guard(main_prog, startup_prog): image = paddle.static.data( name='image', shape=[1, 3, 10, 10], dtype='float32') conv1 = paddle.static.nn.conv2d( image, num_filters=3, filter_size=3, bias_attr=False) loss = paddle.mean(conv1) sgd = paddle.optimizer.SGD(learning_rate=1e-1) sgd.minimize(loss) if run_ipu: place = paddle.IPUPlace() else: place = paddle.CPUPlace() exe = paddle.static.Executor(place) exe.run(startup_prog) if run_ipu: feed_list = [image.name] fetch_list = [loss.name] ipu_strategy = paddle.static.IpuStrategy() ipu_strategy.SetGraphConfig(is_training=True) program = compiler.IPUCompiledProgram( main_prog, ipu_strategy=ipu_strategy).compile(feed_list, fetch_list) else: program = main_prog result = [] for epoch in range(100): loss_res = exe.run(program, feed={"image": np_image}, fetch_list=[loss]) result.append(loss_res) return np.array(result) def test_sgd(self): # cpu and ipu dimenstion mismatch, cpu:(100, 1, 1), ipu:(100, 1) ipu_loss = self._test_sgd(True).flatten() cpu_loss = self._test_sgd(False).flatten() self.assertTrue(np.allclose(ipu_loss, cpu_loss, atol=1e-4)) if __name__ == "__main__": unittest.main()