# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import shutil import numpy as np import paddle import paddle.fluid as fluid import paddle.fluid.compiler as compiler import paddle.optimizer import paddle.static from paddle.fluid.tests.unittests.ipu.op_test_ipu import IPUOpTest paddle.enable_static() @unittest.skipIf(not paddle.is_compiled_with_ipu(), "core is not compiled with IPU") class TestBase(IPUOpTest): def setUp(self): self.set_atol() self.set_feed() self.set_attrs() def set_feed(self): self.feed_shape = [] self.feed_shape.append([1, 3, 10, 10]) self.feed = {} self.feed["in_0"] = np.random.uniform( size=self.feed_shape[0]).astype(np.float32) self.feed_list = list(self.feed.keys()) def set_attrs(self): self.attrs = {} self.attrs['steps'] = 100 self.attrs['save_at_step'] = 20 self.attrs['is_training'] = True self.attrs['opt_type'] = 'sgd' def _test_base(self, save_otherwise_load): scope = fluid.core.Scope() main_prog = paddle.static.Program() startup_prog = paddle.static.Program() main_prog.random_seed = self.SEED startup_prog.random_seed = self.SEED generator = fluid.unique_name.UniqueNameGenerator() with fluid.unique_name.guard(generator): with fluid.scope_guard(scope): with paddle.static.program_guard(main_prog, startup_prog): x = paddle.static.data( name=self.feed_list[0], shape=self.feed_shape[0], dtype='float32') conv1 = paddle.static.nn.conv2d( x, num_filters=3, filter_size=3, bias_attr=False, name='conv2d') loss = paddle.mean(conv1) if self.attrs['is_training']: if self.attrs['opt_type'] == 'sgd': sgd = paddle.optimizer.SGD(learning_rate=1e-2) sgd.minimize(loss) elif self.attrs['opt_type'] == 'adam': adam = paddle.optimizer.Adam(learning_rate=1e-2) adam.minimize(loss) elif self.attrs['opt_type'] == 'lamb': lamb = paddle.optimizer.Lamb(learning_rate=1e-2) lamb.minimize(loss) fetch_list = [loss.name] place = paddle.IPUPlace() exe = paddle.static.Executor(place) exe.run(startup_prog) if not save_otherwise_load: paddle.static.load(main_prog, "model/model") ipu_strategy = paddle.static.IpuStrategy() ipu_strategy.SetGraphConfig( is_training=self.attrs['is_training']) program = compiler.IPUCompiledProgram( main_prog, ipu_strategy=ipu_strategy).compile( self.feed_list, fetch_list) result = [] run_steps = self.attrs['steps'] if save_otherwise_load \ else self.attrs['steps'] - self.attrs['save_at_step'] for i in range(run_steps): tmp = exe.run(program, feed=self.feed, fetch_list=fetch_list) # currently, we update opt state every sess.run, # will optimize if save_otherwise_load and \ i == self.attrs['save_at_step'] - 1: paddle.static.save(main_prog, "model/model") if save_otherwise_load and i >= self.attrs['save_at_step']: result.append(tmp) elif not save_otherwise_load: result.append(tmp) return np.asarray(result).flatten() def test_base(self): res0 = self._test_base(True) res1 = self._test_base(False) self.assertTrue( np.allclose( res0.flatten(), res1.flatten(), atol=self.atol)) shutil.rmtree("model", True) class TestAdam(TestBase): def set_attrs(self): self.attrs = {} self.attrs['steps'] = 100 self.attrs['save_at_step'] = 20 self.attrs['is_training'] = True self.attrs['opt_type'] = 'adam' class TestLamb(TestBase): def set_attrs(self): self.attrs = {} self.attrs['steps'] = 100 self.attrs['save_at_step'] = 20 self.attrs['is_training'] = True self.attrs['opt_type'] = 'lamb' if __name__ == "__main__": unittest.main()