import unittest import numpy as np import paddle.v2.framework.core as core from op_test import get_numeric_gradient from op_test import create_op class GetNumericGradientTest(unittest.TestCase): def test_add_op(self): x = np.random.random((10, 1)).astype("float32") y = np.random.random((10, 1)).astype("float32") z = x + y scope = core.Scope() add_op = create_op(scope, "add", {'X': x, 'Y': y}, {'Out': z}, dict()) arr = get_numeric_gradient(scope, add_op, {'X': x, 'Y': y}, 'X', 'Out') self.assertAlmostEqual(arr.mean(), 1.0, delta=1e-4) def test_softmax_op(self): def stable_softmax(x): """Compute the softmax of vector x in a numerically stable way.""" shiftx = x - np.max(x) exps = np.exp(shiftx) return exps / np.sum(exps) def label_softmax_grad(Y, dY): dX = Y * 0.0 for i in range(Y.shape[0]): d = np.dot(Y[i, :], dY[i, :]) dX[i, :] = Y[i, :] * (dY[i, :] - d) return dX X = np.random.random((2, 2)).astype("float32") Y = np.apply_along_axis(stable_softmax, 1, X) dY = np.ones(Y.shape) dX = label_softmax_grad(Y, dY) scope = core.Scope() softmax_op = create_op(scope, "softmax", {"X": X}, {"Y": Y}, dict()) arr = get_numeric_gradient(scope, softmax_op, {"X": X}, "X", "Y") np.testing.assert_almost_equal(arr, dX, decimal=1e-2) if __name__ == "__main__": unittest.main()