# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from initializer import Initializer, Xavier, Constant from regularizer import WeightDecayRegularizer __all__ = ['ParamAttr'] class ParamAttr(object): def __init__(self, name=None, initializer=None, learning_rate=1.0, regularizer=None, trainable=True, clip=None): self.name = name self.initializer = initializer self.learning_rate = learning_rate self.regularizer = regularizer self.trainable = trainable self.clip = clip def set_default_initializer(self, initializer): if initializer is None: if self.initializer is None: raise ValueError("ParamAttr.initializer is not set") return if self.initializer is not None: return self.initializer = initializer def set_default_param_initializer(self): self.set_default_initializer(Xavier()) def set_default_bias_initializer(self): self.set_default_initializer(Constant(0.0)) @staticmethod def to_attr(arg): if arg is None: return ParamAttr() elif isinstance(arg, list) or isinstance(arg, tuple): return [ParamAttr.to_attr(a) for a in arg] elif isinstance(arg, ParamAttr): return arg elif isinstance(arg, str) or isinstance(arg, unicode): return ParamAttr(name=arg) elif isinstance(arg, Initializer): return ParamAttr(initializer=arg) elif isinstance(arg, WeightDecayRegularizer): return ParamAttr(regularizer=arg) elif isinstance(arg, bool): return ParamAttr.to_attr(None) if arg else False else: raise TypeError("{0} cast to ParamAttr".format(type(arg))) def to_kwargs(self, with_initializer=False): kwargs = { 'name': self.name, 'optimize_attr': { 'learning_rate': self.learning_rate }, 'regularizer': self.regularizer, 'trainable': self.trainable, 'clip_attr': self.clip } if with_initializer: kwargs['initializer'] = self.initializer return kwargs