/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/phi/kernels/sparse/sparse_pool_kernel.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/core/tensor_meta.h" #include "paddle/phi/kernels/funcs/pooling.h" #include "paddle/phi/kernels/funcs/sparse/convolution.h" #include "paddle/phi/kernels/sparse/cpu/convolution.h" namespace phi { namespace sparse { /** * x: (N, D, H, W, C) * kernel: (D, H, W, C, OC) * out: (N, D, H, W, OC) **/ template void MaxPoolKernel(const Context& dev_ctx, const SparseCooTensor& x, const std::vector& kernel_sizes, const std::vector& paddings, const std::vector& dilations, const std::vector& strides, SparseCooTensor* out, DenseTensor* rulebook) { const auto& x_dims = x.dims(); int kernel_size = kernel_sizes[0] * kernel_sizes[1] * kernel_sizes[2]; const std::vector& real_kernel_sizes = phi::funcs::sparse::PoolResetKernel(kernel_sizes, x_dims[4], x_dims[4]); DDim out_dims = {1, 1, 1, 1, 1}; phi::funcs::sparse::GetOutShape( x_dims, real_kernel_sizes, paddings, dilations, strides, &out_dims); const int in_channels = real_kernel_sizes[3]; DenseTensorMeta counter_meta( DataType::INT32, {kernel_size}, DataLayout::NCHW); DenseTensor counter_per_kernel = phi::Empty(dev_ctx, std::move(counter_meta)); const T* in_features_ptr = x.non_zero_elements().data(); // 1. product rule book ProductRuleBook(dev_ctx, x, real_kernel_sizes, paddings, dilations, strides, out_dims, false, rulebook, &counter_per_kernel); UpdateRulebookAndOutIndex( dev_ctx, x, kernel_size, in_channels, out_dims, rulebook, out); int rulebook_len = rulebook->dims()[1]; const int* rulebook_ptr = rulebook->data(); const int* counter_ptr = counter_per_kernel.data(); std::vector offsets(kernel_size + 1); phi::funcs::sparse::PrefixSum(counter_ptr, &offsets[0], kernel_size); std::vector out_flags(out->nnz(), false); // 2. max pool T* out_features_ptr = out->mutable_non_zero_elements()->data(); phi::funcs::MaxPool max_pool_functor; for (int i = 0; i < kernel_size; i++) { for (int j = 0; j < counter_ptr[i]; j++) { int in_i = rulebook_ptr[rulebook_len + offsets[i] + j]; int out_i = rulebook_ptr[rulebook_len * 2 + offsets[i] + j]; if (!out_flags[out_i]) { out_flags[out_i] = true; memcpy(&out_features_ptr[out_i * in_channels], &in_features_ptr[in_i * in_channels], in_channels * sizeof(T)); } else { for (int c = 0; c < in_channels; c++) { max_pool_functor.compute(in_features_ptr[in_i * in_channels + c], &out_features_ptr[out_i * in_channels + c]); } } } } } } // namespace sparse } // namespace phi PD_REGISTER_KERNEL(sparse_maxpool, CPU, ALL_LAYOUT, phi::sparse::MaxPoolKernel, float, double) { kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO); }