# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import paddle from paddle import Model, set_device from paddle.static import InputSpec as Input from paddle.metric import Accuracy from paddle.vision.datasets import MNIST from paddle.vision.models import LeNet import paddle.static.amp as amp import random import argparse import ast SEED = 2 paddle.seed(SEED) paddle.framework.random._manual_program_seed(SEED) np.random.seed(SEED) random.seed(SEED) paddle.enable_static() set_device('cpu') def parse_args(): parser = argparse.ArgumentParser("Lenet BF16 train static script") parser.add_argument('-bf16', '--bf16', type=ast.literal_eval, default=False, help="whether use bf16") args = parser.parse_args() return args class MnistDataset(MNIST): def __init__(self, mode, return_label=True): super(MnistDataset, self).__init__(mode=mode) self.return_label = return_label def __getitem__(self, idx): img = np.reshape(self.images[idx], [1, 28, 28]) if self.return_label: return img, np.array(self.labels[idx]).astype('int64') return img, def __len__(self): return len(self.images) def compute_accuracy(pred, gt): pred = np.argmax(pred, -1) gt = np.array(gt) correct = pred[:, np.newaxis] == gt return np.sum(correct) / correct.shape[0] def main(args): print('download training data and load training data') train_dataset = MnistDataset(mode='train', ) val_dataset = MnistDataset(mode='test', ) test_dataset = MnistDataset(mode='test', return_label=False) im_shape = (-1, 1, 28, 28) batch_size = 64 inputs = [Input(im_shape, 'float32', 'image')] labels = [Input([None, 1], 'int64', 'label')] model = Model(LeNet(), inputs, labels) optim = paddle.optimizer.SGD(learning_rate=0.001) if args.bf16: optim = amp.bf16.decorate_bf16( optim, amp_lists=amp.bf16.AutoMixedPrecisionListsBF16(custom_bf16_list={ 'matmul_v2', 'pool2d', 'relu', 'scale', 'elementwise_add', 'reshape2', 'slice', 'reduce_mean', 'conv2d' }, )) # Configuration model model.prepare(optim, paddle.nn.CrossEntropyLoss(), Accuracy()) # Training model # if args.bf16: print('Training BF16') else: print('Training FP32') model.fit(train_dataset, epochs=2, batch_size=batch_size, verbose=1) eval_result = model.evaluate(val_dataset, batch_size=batch_size, verbose=1) output = model.predict(test_dataset, batch_size=batch_size, stack_outputs=True) np.testing.assert_equal(output[0].shape[0], len(test_dataset)) acc = compute_accuracy(output[0], val_dataset.labels) print("acc", acc) print("eval_result['acc']", eval_result['acc']) np.testing.assert_allclose(acc, eval_result['acc']) if __name__ == "__main__": args = parse_args() main(args)