# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ''' Fluid model analysis tools ''' from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import logging import os import subprocess import sys from collections import OrderedDict from operator import mul # Simple logging config logging.basicConfig( level=logging.DEBUG, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) import numpy as np import paddle.fluid as fluid from paddle.fluid import debugger from paddle.fluid import core # Command arguments parser = argparse.ArgumentParser() parser.add_argument( "--model_dir", type=str, required=True, help="Model dir path") parser.add_argument( "--input_file", default="", type=str, help="Input datas file path") parser.add_argument( "--topo_file", type=str, required=True, help="Runtime topology order output file path") parser.add_argument( "--tensor_file", default="", type=str, required=True, help="Tensor file path") parser.add_argument( "--tensor_names", default="", type=str, help="If tensor_names is not empty, then only this tensors will be compare") parser.add_argument( "--separator", default=",", type=str, help="Deafult separator, use in string split") parser.add_argument( "--output_tensor", default=0, type=int, help="dump fluid runntime tensors or not") parser.add_argument( "--tensor_output_file", default="./tensor_output_py", type=str, help="dump fluid runntime tensors filepath") parser.add_argument( "--tensor_output_length", default=-1, type=int, help="Output tensor data length, dims size will be used if tensor_output_length < 0" ) parser.add_argument( "--only_first", default=1, type=int, help="If only output the first mismatch vars info or not") parser.add_argument( "--output_file", default="./diff.txt", type=str, help="dump diff info filepath") parser.add_argument( "--threshold", default=1e-5, type=float, help="float value diff threshold") # Help functions def load_file(filename, delim=None): """ Load file help function """ with open(filename) as fd: for line in fd: line = line.strip() assert len(line) != "" if delim: line = line.split(delim) yield line class FluidModelExecutor(object): """ A fluid inference model executeor """ def __init__(self, model_dir, input_file): self.model_dir = model_dir self.place = fluid.CPUPlace() self.exe = fluid.Executor(self.place) self.scope = fluid.core.Scope() self.input_data = self._load_input_file(input_file) self.program, self.feed_target_names, self.fetch_targets = self._load_inference_model( ) def infer_var_list(self, arg_names=None, out_data_len=-1, dump_tensor=False, dump_tensor_file=''): """ Get variables' tensor in var_list """ with fluid.scope_guard(self.scope): global_block = self.program.global_block() feed_list = self._prepare_feed_data(global_block, self.feed_target_names) fetch_targets = self._fetch_tmp_vars(global_block, arg_names) results = self.exe.run(program=self.program, feed=feed_list, fetch_list=fetch_targets, return_numpy=False) return self._get_results( results, fetch_targets, arg_names=arg_names, need_save=dump_tensor, save_path=dump_tensor_file, out_data_len=out_data_len) def draw_graph(self, output_path='./', filename='debug'): """ Draw graph with graphviz """ dot_path = os.path.join([output_path, filename + '.dot']) pdf_path = os.path.join([output_path, filename + '.pdf']) debugger.draw_block_graphviz(self.program.global_block(), path=dot_path) cmd = ["dot", "-Tpdf", dot_path, "-o", pdf_path] subprocess.Popen( cmd, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE) def _prepare_feed_data(self, block, feed_target_names): feed_dict = dict() def fill_data(np_dtype, col, shape): if self.input_data: input_size = reduce(mul, shape) assert len(self.input_data[0]) > col data = self.input_data[0][col].split(' ') assert len(data) == input_size return np.array( map(np_dtype, data), dtype=np_dtype).reshape(shape) else: return np.ones(shape, dtype=np_dtype) # TODO(sangoly): support multiple feed fields assert len(feed_target_names) == 1 for idx, name in enumerate(feed_target_names): var = block.var(name) np_shape = list(var.shape) # TODO(sangoly): support batch if np_shape[0] == -1: np_shape[0] = 1 if var.dtype == core.VarDesc.VarType.INT32: feed_dict[name] = fill_data(np.int32, idx, np_shape) elif var.dtype == core.VarDesc.VarType.INT64: feed_dict[name] = fill_data(np.int64, idx, np_shape) elif var.dtype == core.VarDesc.VarType.FP16: feed_dict[name] = fill_data(np.float16, idx, np_shape) elif var.dtype == core.VarDesc.VarType.FP32: feed_dict[name] = fill_data(np.float32, idx, np_shape) elif var.dtype == core.VarDesc.VarType.FP64: feed_dict[name] = fill_data(np.float64, idx, np_shape) else: raise TypeError("Data type is not supported") return feed_dict def _load_input_file(self, input_file=None): input_data = [] if not input_file: return input_data logger.info("Loading input file %s ..." % input_file) for line in load_file(input_file, "\t"): input_data.append(line) return input_data def _load_inference_model(self): with fluid.scope_guard(self.scope): model_abs_path = os.path.join(self.model_dir, 'model') param_abs_path = os.path.join(self.model_dir, 'params') if os.path.exists(model_abs_path) and os.path.exists( param_abs_path): return fluid.io.load_inference_model(self.model_dir, exe, 'model', 'params') else: return fluid.io.load_inference_model(self.model_dir, self.exe) def _fetch_tmp_vars(self, block, var_names_list=None): fetch_var = block.var('fetch') old_fetch_names = set([var.name for var in self.fetch_targets]) new_fetch_vars = [block.var(name) for name in old_fetch_names] i = len(new_fetch_vars) if var_names_list is None: var_names_list = block.vars.keys() for var_name in var_names_list: if var_name in old_fetch_names: continue new_fetch_vars.append(block.var(var_name)) block.append_op( type='fetch', inputs={'X': [var_name]}, outputs={'Out': [fetch_var]}, attrs={'col': i}) i = i + 1 return new_fetch_vars def _get_results(self, results, new_fetch_targets, need_save=False, arg_names=None, save_path='', out_data_len=10): res = OrderedDict() old_fetch_names = set([var.name for var in self.fetch_targets]) if need_save: out_fd = open(save_path, 'w') for result in results: idx = results.index(result) name = new_fetch_targets[idx].name dim = [v if v >= 0 else 1 for v in new_fetch_targets[idx].shape] size = min(reduce(mul, dim), out_data_len) if out_data_len > 0 else reduce(mul, dim) values = list(np.array(result).flatten())[:size] res[name] = {"dim": dim, "values": values} if need_save: if arg_names and name not in arg_names: continue dim_str = '{' + ','.join(map(str, dim)) + '}' out_fd.write('\t'.join( [name, dim_str, ' '.join(map(str, values))]) + '\n') if need_save: out_fd.close() return res class Analyser(object): """ A FLuid model analysis tool """ def __init__(self, args): self.args = args self.tensors = OrderedDict() self.topo = {} self.input = [] logger.info("Loading fluid inference model %s ..." % args.model_dir) self.predictor = FluidModelExecutor(args.model_dir, args.input_file) def analysis(self): """ Analyser work function """ self._load_topo_file() self._load_tensor_file() arg_names = self.args.tensor_names.split(',') if self.args.tensor_names != "" \ else self.tensors.keys() infer_results = self.predictor.infer_var_list( out_data_len=self.args.tensor_output_length, arg_names=arg_names, dump_tensor=self.args.output_tensor, dump_tensor_file=self.args.tensor_output_file) if self.args.tensor_names == "": self._check_diff_nodes(infer_results) def _parse_topo_field(self, field): params = [item.split(':')[1].strip() for item in field[1:-1].split(' ')] params = [item.split('#') for item in params if item != ""] return [item for lst in params for item in lst] def _load_topo_file(self): if self.args.topo_file == "": raise ValueError("Topo file path in empty") logger.info("Loading topo file %s ..." % self.args.topo_file) for line in load_file(self.args.topo_file, '\t'): op_type, inputs, outputs = line for name in self._parse_topo_field(outputs): if name not in self.topo: self.topo[name] = [] self.topo[name].append(line) def _load_tensor_file(self): if self.args.tensor_file == "": raise ValueError("Tensor file path in empty") logger.info("Loading tensor file %s ..." % args.tensor_file) for line in load_file(args.tensor_file, "\t"): name, dim, values = line dim = map(int, dim[1:-1].split(',')) values = map(float, values.split(' ')) dim_size = reduce(mul, dim) value_size = len(values) assert dim_size == value_size, \ "Dim size mismatch with data: %d vs %d" % (dim_size, value_size) self.tensors[name] = {"dim": dim, "values": values} def _check_diff_nodes(self, results): """ NOTE: The tensor output by c++ debug tool is according to runtime topology order, so we can find the first ops (may be one of them) with error results """ assert len(self.tensors) == len(results), \ "FLuid output tensor'size mismatch with `tensor_file`" diff_vars = [] flag = False for k in self.tensors: if k not in results: raise KeyError("Have not found infer result for `%s`" % k) if len(self.tensors[k]['values']) != len(results[k]['values']): raise ValueError( "Argname: %s size mismatch with `tensor_file`: %d vs %d" % (k, len(self.tensors[k]['values']), len(results[k]['values']))) for i in range(len(self.tensors[k]['values'])): if abs(self.tensors[k]['values'][i] - results[k]['values'][ i]) > args.threshold: diff_vars.append(k) if args.only_first: flag = True break if flag: break self._output_diff_nodes(results, diff_vars) def _output_diff_nodes(self, results, diff_vars): logger.info('is here') def output_param_info(inputs, outputs, infos, fd): def tensor_repr(name): return '\t'.join([ name, '{' + ','.join(map(str, infos[name]['dim'])) + '}', ' '.join(map(str, infos[name]['values'])) ]) for name in self._parse_topo_field(inputs): if name not in infos: continue fd.write(tensor_repr(name) + '\n') for name in self._parse_topo_field(outputs): if name not in infos: continue fd.write(tensor_repr(name) + '\n') if len(diff_vars) == 0: logger.info("No diff found. Congratulation!") return logger.info("Total diff vars: %d" % len(diff_vars)) with open(self.args.output_file, 'w') as fd: for var in diff_vars: if var not in self.topo: raise KeyError("%s not in any op's output params, " % var + "please check your model and input") fd.write( '>>>>>>>>>>>>>>>>>>DIFF VARIABLE: %s<<<<<<<<<<<<<<<<<<<\n' % var) for idx, (op_type, inputs, outputs) in enumerate(self.topo[var]): op_repr = '\t'.join([op_type, inputs, outputs]) logger.info("dump diff info: ------------ %s" % op_repr) fd.write(op_repr + '\n') fd.write( "--------------- Tensor File info ---------------\n") output_param_info(inputs, outputs, self.tensors, fd) fd.write( "--------------- Fluid Tensor info ---------------\n") output_param_info(inputs, outputs, results, fd) fd.write("\n\n") if __name__ == "__main__": args = parser.parse_args() analyser = Analyser(args) analyser.analysis()