# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle.fluid as fluid import numpy import sys TRAIN_FILES = ['train.recordio'] TEST_FILES = ['test.recordio'] DICT_DIM = 89528 # embedding dim emb_dim = 128 # hidden dim hid_dim = 128 # hidden dim2 hid_dim2 = 96 # class num class_dim = 2 def network_cfg(is_train, pass_num=100): with fluid.unique_name.guard(): train_file_obj = fluid.layers.open_files( filenames=TRAIN_FILES, pass_num=pass_num, shapes=[[-1, 1], [-1, 1]], lod_levels=[1, 0], dtypes=['int64', 'int64'], thread_num=1) test_file_obj = fluid.layers.open_files( filenames=TEST_FILES, pass_num=1, shapes=[[-1, 1], [-1, 1]], lod_levels=[1, 0], dtypes=['int64', 'int64'], thread_num=1) if is_train: file_obj = fluid.layers.shuffle(train_file_obj, buffer_size=1000) else: file_obj = test_file_obj file_obj = fluid.layers.double_buffer( file_obj, name="train_double_buffer" if is_train else 'test_double_buffer') data, label = fluid.layers.read_file(file_obj) emb = fluid.layers.embedding(input=data, size=[DICT_DIM, emb_dim]) # sequence conv with window size = 3 win_size = 3 conv_3 = fluid.nets.sequence_conv_pool( input=emb, num_filters=hid_dim, filter_size=win_size, act="tanh", pool_type="max") # fc layer after conv fc_1 = fluid.layers.fc(input=[conv_3], size=hid_dim2) # probability of each class prediction = fluid.layers.fc(input=[fc_1], size=class_dim, act="softmax") # cross entropy loss cost = fluid.layers.cross_entropy(input=prediction, label=label) # mean loss avg_cost = fluid.layers.mean(x=cost) acc = fluid.layers.accuracy(input=prediction, label=label) if is_train: # SGD optimizer sgd_optimizer = fluid.optimizer.Adagrad(learning_rate=0.01) sgd_optimizer.minimize(avg_cost) return { 'loss': avg_cost, 'log': [avg_cost, acc], 'file': train_file_obj if is_train else test_file_obj } def main(): train = fluid.Program() startup = fluid.Program() with fluid.program_guard(train, startup): train_args = network_cfg(is_train=True) test = fluid.Program() with fluid.program_guard(test, fluid.Program()): test_args = network_cfg(is_train=False) # startup place = fluid.CUDAPlace(0) exe = fluid.Executor(place=place) exe.run(startup) train_exe = fluid.ParallelExecutor( use_cuda=True, loss_name=train_args['loss'].name, main_program=train) fetch_var_list = [var.name for var in train_args['log']] for i in xrange(sys.maxint): result = map(numpy.array, train_exe.run(fetch_list=fetch_var_list if i % 1000 == 0 else [])) if len(result) != 0: print 'Train: ', result if i % 1000 == 0: test_exe = fluid.ParallelExecutor( use_cuda=True, main_program=test, share_vars_from=train_exe) loss = [] acc = [] try: while True: loss_np, acc_np = map( numpy.array, test_exe.run(fetch_list=fetch_var_list)) loss.append(loss_np[0]) acc.append(acc_np[0]) except: test_args['file'].reset() print 'TEST: ', numpy.mean(loss), numpy.mean(acc) if __name__ == '__main__': main()