# 参数概述 虽然Paddle看起来包含了众多参数,但是大部分参数是为开发者提供的,或者已经在集群提交环境中自动设置,因此用户并不需要关心它们。在此,根据这些参数的使用场合,我们将它们划分为不同的类别。例如,`通用`类别中的参数可用于所有场合。某些参数只可用于特定的层中,而有些参数需要在集群多机训练中使用等。 √
参数 本地训练 集群训练 本地测试 集群测试
通用 job
use_gpu
local
config
config_args
num_passes
trainer_count
version
show_layer_stat
训练dot_period
test_period
saving_period
show_parameter_stats_period
init_model_path
load_missing_parameter_strategy
saving_period_by_batches
use_old_updater
enable_grad_share
grad_share_block_num
log_error_clipping
log_clipping
save_only_one
allow_inefficient_sparse_update
start_pass
训练/测试save_dir
训练过程中测试test_period
average_test_period
测试model_list
test_wait
test_pass
predict_output_dir
distribute_test
Auc/正负对验证(PnpairValidation)predict_file
GPUgpu_id
parallel_nn
allow_only_one_model_on_one_gpu
cudnn_dir
cuda_dir
cudnn_conv_workspace_limit_in_mb
递归神经网络(RNN) beam_size
rnn_use_batch
prev_batch_state
diy_beam_search_prob_so
度量学习(metric learning)external
data_server_port
参数服务器(PServer)start_pserver
pservers
port
port_num
ports_num_for_sparse
nics
rdma_tcp
small_messages
loadsave_parameters_in_pserver
log_period_server
pserver_num_threads
sock_send_buf_size
sock_recv_buf_size
num_gradient_servers
parameter_block_size
parameter_block_size_for_sparse
异步随机梯度下降(Async SGD)async_count
async_lagged_ratio_min
async_lagged_ratio_default
性能调优(Performance Tuning)log_barrier_abstract
log_barrier_lowest_nodes
log_barrier_show_log
check_sparse_distribution_batches
check_sparse_distribution_ratio
check_sparse_distribution_unbalance_degree
check_sparse_distribution_in_pserver
show_check_sparse_distribution_log
数据提供器(Data Provider)memory_threshold_on_load_data
随机数seed
thread_local_rand_use_global_seed
单元测试checkgrad_eps
矩阵/向量enable_parallel_vector