# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np from op_test import OpTest, skip_check_grad_ci, check_out_dtype import paddle import paddle.fluid.core as core class ApiMaxTest(unittest.TestCase): def setUp(self): if core.is_compiled_with_cuda(): self.place = core.CUDAPlace(0) else: self.place = core.CPUPlace() def test_api(self): paddle.enable_static() with paddle.static.program_guard(paddle.static.Program(), paddle.static.Program()): data = paddle.static.data("data", shape=[10, 10], dtype="float32") result_max = paddle.max(x=data, axis=1) exe = paddle.static.Executor(self.place) input_data = np.random.rand(10, 10).astype(np.float32) res, = exe.run(feed={"data": input_data}, fetch_list=[result_max]) self.assertEqual((res == np.max(input_data, axis=1)).all(), True) with paddle.static.program_guard(paddle.static.Program(), paddle.static.Program()): data = paddle.static.data("data", shape=[10, 10], dtype="int64") result_max = paddle.max(x=data, axis=0) exe = paddle.static.Executor(self.place) input_data = np.random.randint(10, size=(10, 10)).astype(np.int64) res, = exe.run(feed={"data": input_data}, fetch_list=[result_max]) self.assertEqual((res == np.max(input_data, axis=0)).all(), True) with paddle.static.program_guard(paddle.static.Program(), paddle.static.Program()): data = paddle.static.data("data", shape=[10, 10], dtype="int64") result_max = paddle.max(x=data, axis=(0, 1)) exe = paddle.static.Executor(self.place) input_data = np.random.randint(10, size=(10, 10)).astype(np.int64) res, = exe.run(feed={"data": input_data}, fetch_list=[result_max]) self.assertEqual((res == np.max(input_data, axis=(0, 1))).all(), True) def test_errors(self): paddle.enable_static() def test_input_type(): with paddle.static.program_guard(paddle.static.Program(), paddle.static.Program()): data = np.random.rand(10, 10) result_max = paddle.max(x=data, axis=0) self.assertRaises(TypeError, test_input_type) def test_axis_type(): with paddle.static.program_guard(paddle.static.Program(), paddle.static.Program()): data = paddle.static.data("data", shape=[10, 10], dtype="int64") axis = paddle.static.data("axis", shape=[10, 10], dtype="int64") result_min = paddle.min(data, axis) self.assertRaises(TypeError, test_axis_type) def test_imperative_api(self): paddle.disable_static() np_x = np.array([10, 10]).astype('float64') x = paddle.to_tensor(np_x) z = paddle.max(x, axis=0) np_z = z.numpy() z_expected = np.array(np.max(np_x, axis=0)) self.assertEqual((np_z == z_expected).all(), True) class TestOutDtype(unittest.TestCase): def test_max(self): api_fn = paddle.max shape = [10, 16] check_out_dtype( api_fn, in_specs=[(shape, )], expect_dtypes=['float32', 'float64', 'int32', 'int64']) if __name__ == '__main__': unittest.main()