# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np from op_test import OpTest def conv_shift_forward(x, y): out = np.zeros_like(x) M = x.shape[1] N = y.shape[1] y_half_width = (N - 1) // 2 for i in range(M): for j in range(N): out[:, i] += x[:, (i + j + M - y_half_width) % M] * y[:, j] return out class TestConvShiftOp(OpTest): def setUp(self): self.op_type = "conv_shift" batch_size = 4 x_dim = 17 y_dim = 3 # must be odd and <= x_dim x = np.random.random((batch_size, x_dim)).astype("float32") y = np.random.random((batch_size, y_dim)).astype("float32") self.inputs = {'X': x, 'Y': y} out = conv_shift_forward(x, y) self.outputs = {'Out': out} def test_check_output(self): self.check_output() def test_check_grad_normal(self): self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.05) def test_check_grad_ignore_x(self): self.check_grad( ['Y'], 'Out', max_relative_error=0.05, no_grad_set=set("X")) def test_check_grad_ignore_y(self): self.check_grad( ['X'], 'Out', max_relative_error=0.05, no_grad_set=set('Y')) if __name__ == '__main__': unittest.main()