// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/operators/reader/buffered_reader.h" #include "paddle/fluid/platform/profiler.h" namespace paddle { namespace operators { namespace reader { BufferedReader::~BufferedReader() { VLOG(1) << "~BufferedReader"; reader_->Shutdown(); while (!position_.empty()) { auto &front = position_.front(); if (front.valid()) { front.wait(); } position_.pop(); } } BufferedReader::BufferedReader( const std::shared_ptr &reader, const platform::Place &place, size_t buffer_size, bool pin_memory) : framework::DecoratedReader(reader), thread_pool_(1), place_(place), buffer_size_(buffer_size), pin_memory_(pin_memory) { VLOG(1) << "BufferedReader"; #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) if (platform::is_gpu_place(place_) && !pin_memory) { int dev_idx = BOOST_GET_CONST(platform::CUDAPlace, place_).device; compute_stream_ = ((platform::CUDADeviceContext *)(platform::DeviceContextPool::Instance() .Get(place_))) ->stream(); events_.resize(buffer_size); for (auto &event : events_) { event = platform::CudaEventResourcePool::Instance().New(dev_idx); } stream_ = platform::CudaStreamResourcePool::Instance().New(dev_idx); } #endif #ifdef PADDLE_WITH_ASCEND_CL if (platform::is_npu_place(place_)) { int dev_idx = BOOST_GET_CONST(platform::NPUPlace, place_).device; compute_stream_ = ((platform::NPUDeviceContext *)(platform::DeviceContextPool::Instance() .Get(place_))) ->stream(); events_.resize(buffer_size); for (auto &event : events_) { event = platform::NpuEventResourcePool::Instance().New(dev_idx); } stream_ = platform::NpuStreamResourcePool::Instance().New(dev_idx); } #endif cpu_buffer_.resize(buffer_size); cuda_buffer_.resize(buffer_size); npu_buffer_.resize(buffer_size); ReadTillBufferFullAsync(); } void BufferedReader::ReadTillBufferFullAsync() { for (size_t i = 0; i < buffer_size_; ++i) { ReadAsync(i); } } void BufferedReader::ReadAsync(size_t i) { position_.emplace(thread_pool_.enqueue([this, i]() -> size_t { TensorVec &cpu = cpu_buffer_[i]; reader_->ReadNext(&cpu); if (cpu.empty()) { return -1UL; } #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) // @{ Group GPU Place if (platform::is_gpu_place(place_)) { TensorVec &cuda = cuda_buffer_[i]; if (cuda.empty()) { cuda.resize(cpu.size()); } else { PADDLE_ENFORCE_EQ( cuda.size(), cpu.size(), platform::errors::InvalidArgument( "Input tensor number on GPU and CPU devices are not matched.")); } if (pin_memory_) { // NOTE: [Copy processing of different input devices] // We may accept input tensor in three different devices: // - CPUPlace // - CUDAPinnedPlace // - CUDAPlace // CUDA Stream Synchronizing is slow, in order to avoid Synchronizing // in BufferedReader thread, we do data copy as follows: // - If src Tensor on CPU memory, we copy it to CUDAPinned memory // - IF src Tensor on CUDAPinned memory, we use it directly // - IF src Tensor on CUDA memory, we use it directly platform::CUDAPinnedPlace cuda_pinned_place; std::vector cuda_pinned_ptrs; cuda_pinned_ptrs.reserve(cpu.size()); platform::RecordEvent record_event("BufferedReader:MemoryCopy"); // NODE(chenweihang): When we use CUDAPinned Memory, we need call // cudaHostAlloc, that is a CUDA API, calling CUDA API need load // cuda lib into device, it will cost hundreds of MB of GPU memory. // If we don't set Device here, which will use CUDAPlace(0) default. platform::SetDeviceId( BOOST_GET_CONST(platform::CUDAPlace, place_).device); for (size_t i = 0; i < cpu.size(); ++i) { if (platform::is_cpu_place(cpu[i].place())) { cuda[i].Resize(cpu[i].dims()); cuda[i].set_layout(cpu[i].layout()); cuda_pinned_ptrs[i] = cuda[i].mutable_data(cuda_pinned_place, cpu[i].type()); auto size = cpu[i].numel() * paddle::framework::SizeOfType(cpu[i].type()); memory::Copy(cuda_pinned_place, cuda_pinned_ptrs[i], BOOST_GET_CONST(platform::CPUPlace, cpu[i].place()), cpu[i].data(), size); cuda[i].set_lod(cpu[i].lod()); } else { // Here the cpu[i]'s place may be CUDAPlace, CUDAPinnedPlace, or // others, we don't copy the memory of it to CUDAPinnedPlace, but // we should share tensor data to cuda[i] cuda[i].ShareDataWith(cpu[i]); } } } else { // NOTE(liangdun): using async copy instead of TensorCopySync // TensorCopySync would block other stream, because TensorCopySync // issues the copying command to the default stream, it will make two // commands from different streams cannot run concurrently. std::vector gpu_ptrs; gpu_ptrs.reserve(cpu.size()); for (size_t i = 0; i < cpu.size(); ++i) { cuda[i].Resize(cpu[i].dims()); cuda[i].set_layout(cpu[i].layout()); gpu_ptrs.emplace_back(cuda[i].mutable_data(place_, cpu[i].type())); } // NOTE(zjl): cudaStreamWaitEvent() must be called after all // cuda[i].mutable_data() is called, since some ops release // cuda memory immediately without waiting cuda kernel ends platform::SetDeviceId( BOOST_GET_CONST(platform::CUDAPlace, place_).device); #ifdef PADDLE_WITH_HIP PADDLE_ENFORCE_CUDA_SUCCESS( hipEventRecord(events_[i].get(), compute_stream_)); PADDLE_ENFORCE_CUDA_SUCCESS( hipStreamWaitEvent(stream_.get(), events_[i].get(), 0)); #else PADDLE_ENFORCE_CUDA_SUCCESS( cudaEventRecord(events_[i].get(), compute_stream_)); PADDLE_ENFORCE_CUDA_SUCCESS( cudaStreamWaitEvent(stream_.get(), events_[i].get(), 0)); #endif platform::RecordEvent record_event("BufferedReader:MemoryCopy"); for (size_t i = 0; i < cpu.size(); ++i) { auto cpu_place = cpu[i].place(); auto cpu_ptr = cpu[i].data(); auto gpu_ptr = gpu_ptrs[i]; auto size = cpu[i].numel() * paddle::framework::SizeOfType(cpu[i].type()); if (platform::is_cuda_pinned_place(cpu_place)) { memory::Copy(BOOST_GET_CONST(platform::CUDAPlace, place_), gpu_ptr, BOOST_GET_CONST(platform::CUDAPinnedPlace, cpu_place), cpu_ptr, size, stream_.get()); } else if ((platform::is_gpu_place(cpu_place))) { memory::Copy(BOOST_GET_CONST(platform::CUDAPlace, place_), gpu_ptr, BOOST_GET_CONST(platform::CUDAPlace, cpu_place), cpu_ptr, size, stream_.get()); } else { platform::CUDAPinnedPlace cuda_pinned_place; framework::LoDTensor cuda_pinned_tensor; cuda_pinned_tensor.Resize(cpu[i].dims()); auto cuda_pinned_ptr = cuda_pinned_tensor.mutable_data( cuda_pinned_place, cpu[i].type()); memory::Copy(cuda_pinned_place, cuda_pinned_ptr, BOOST_GET_CONST(platform::CPUPlace, cpu_place), cpu_ptr, size); memory::Copy(BOOST_GET_CONST(platform::CUDAPlace, place_), gpu_ptr, cuda_pinned_place, cuda_pinned_ptr, size, stream_.get()); #ifdef PADDLE_WITH_HIP PADDLE_ENFORCE_CUDA_SUCCESS(hipStreamSynchronize(stream_.get())); #else PADDLE_ENFORCE_CUDA_SUCCESS(cudaStreamSynchronize(stream_.get())); #endif } cuda[i].set_lod(cpu[i].lod()); } #ifdef PADDLE_WITH_HIP PADDLE_ENFORCE_CUDA_SUCCESS(hipStreamSynchronize(stream_.get())); #else PADDLE_ENFORCE_CUDA_SUCCESS(cudaStreamSynchronize(stream_.get())); #endif } } #endif #ifdef PADDLE_WITH_ASCEND_CL if (platform::is_npu_place(place_)) { TensorVec &npu = npu_buffer_[i]; if (npu.empty()) { npu.resize(cpu.size()); } else { PADDLE_ENFORCE_EQ( npu.size(), cpu.size(), platform::errors::InvalidArgument( "Input tensor number on NPU and CPU devices are not matched. " "The number on NPU is %d, on CPU is %d", npu.size(), cpu.size())); } std::vector npu_ptrs; npu_ptrs.reserve(cpu.size()); for (size_t i = 0; i < cpu.size(); ++i) { npu[i].Resize(cpu[i].dims()); npu[i].set_layout(cpu[i].layout()); npu_ptrs.emplace_back(npu[i].mutable_data(place_, cpu[i].type())); } platform::SetNPUDeviceId( BOOST_GET_CONST(platform::NPUPlace, place_).device); PADDLE_ENFORCE_NPU_SUCCESS( aclrtRecordEvent(events_[i].get(), compute_stream_)); PADDLE_ENFORCE_NPU_SUCCESS( aclrtStreamWaitEvent(stream_.get(), events_[i].get())); platform::RecordEvent record_event("BufferedReader:MemoryCopy"); for (size_t i = 0; i < cpu.size(); ++i) { auto cpu_place = cpu[i].place(); auto cpu_ptr = cpu[i].data(); auto npu_ptr = npu_ptrs[i]; auto size = cpu[i].numel() * paddle::framework::SizeOfType(cpu[i].type()); if ((platform::is_npu_place(cpu_place))) { memory::Copy(BOOST_GET_CONST(platform::NPUPlace, place_), npu_ptr, BOOST_GET_CONST(platform::NPUPlace, cpu_place), cpu_ptr, size, stream_.get()); } else { memory::Copy(BOOST_GET_CONST(platform::NPUPlace, place_), npu_ptr, BOOST_GET_CONST(platform::CPUPlace, cpu_place), cpu_ptr, size, stream_.get()); PADDLE_ENFORCE_NPU_SUCCESS(aclrtSynchronizeStream(stream_.get())); } npu[i].set_lod(cpu[i].lod()); } PADDLE_ENFORCE_NPU_SUCCESS(aclrtSynchronizeStream(stream_.get())); } #endif return i; })); } void BufferedReader::ShutdownImpl() { VLOG(1) << "ShutdownImpl"; reader_->Shutdown(); while (!position_.empty()) { position_.pop(); } prev_pos_ = -1UL; } void BufferedReader::StartImpl() { reader_->Start(); ReadTillBufferFullAsync(); } void BufferedReader::ReadNextImpl(std::vector *out) { if (position_.empty()) { out->clear(); return; } size_t i = position_.front().get(); position_.pop(); if (i == -1UL) { ReadNextImpl(out); return; } if (platform::is_gpu_place(place_)) { *out = std::move(cuda_buffer_[i]); } else if (platform::is_npu_place(place_)) { *out = std::move(npu_buffer_[i]); } else { *out = std::move(cpu_buffer_[i]); } // Do not push current position into ReadAsync. Push the previous position // Since all computation in fluid are async, change the data of // current position may cause data error. if (prev_pos_ != -1Ul) { ReadAsync(prev_pos_); } prev_pos_ = i; } } // namespace reader } // namespace operators } // namespace paddle