# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __all__ = [] from paddle import _C_ops, _legacy_C_ops from paddle.fluid.framework import dygraph_only @dygraph_only def attention(query, key, value, sparse_mask, key_padding_mask=None, attn_mask=None, name=None): """ Note: This API is only used from ``CUDA 11.7`` . SparseCsrTensor is used to store the intermediate result of Attention matrix in Transformer module, which can reduce memory usage and improve performance. ``sparse_mask`` express the sparse layout in CSR format. The calculation equation is: .. math:: result = softmax(\frac{ Q * K^T }{\sqrt{d}}) * V where : ``Q``, ``K``, and ``V`` represent the three input parameters of the attention module. The shape of the three parameters are: `[batch_size, num_heads, seq_len, head_dim]`, and ``d`` represents ``head_dim`` . Args: query(DenseTensor): `query` in the Attention module. 4D Tensor with float32 or float64. key(DenseTensor): `key` in the Attention module. 4D Tensor with float32 or float64. value(DenseTensor): `value` in the Attention module. 4D Tensor with float32 or float64. sparse_mask(SparseCsrTensor): The sparse layout in the Attention module. Its dense shape is `[batch_size*num_heads, seq_len, seq_len]` . `nnz` of each batch must be the same. dtype of `crows` and `cols` must be int64, dtype of `values` can be float32 or float64. key_padding_mask(DenseTensor, optional): The key padding mask tensor in the Attention module. 2D tensor with shape: [batch_size, seq_len]. dtype can be float32 or float64. Default: None. attn_mask(DenseTensor, optional): The attention mask tensor in the Attention module. 2D tensor with shape: [seq_len, seq_len]. dtype can be float32 or float64. Default: None. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: 4D tensor with shape: [batch_size, num_heads, seq_len, head_dim]. dtype is same with input. Examples: .. code-block:: python import paddle batch_size = 16 num_heads = 16 seq_len = 512 head_dim = 32 query = paddle.rand([batch_size, num_heads, seq_len, head_dim]) key = paddle.rand([batch_size, num_heads, seq_len, head_dim]) value = paddle.rand([batch_size, num_heads, seq_len, head_dim]) query.stop_gradient = False key.stop_gradient = False value.stop_gradient = False mask = paddle.nn.functional.dropout(paddle.ones([seq_len, seq_len])).expand([batch_size, num_heads, seq_len, seq_len]) sp_mask = mask.reshape([-1, seq_len, seq_len]).to_sparse_csr() kp_mask = paddle.randint(0, 2, [batch_size, seq_len]) attn_mask = paddle.randint(0, 2, [seq_len, seq_len]) output = paddle.incubate.sparse.nn.functional.attention(query, key, value, sp_mask, kp_mask, attn_mask) output.backward() """ return _C_ops.sparse_fused_attention(query, key, value, sparse_mask, key_padding_mask, attn_mask)