// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/lite/kernels/arm/scale_compute.h" #include #include #include "paddle/fluid/lite/core/op_registry.h" namespace paddle { namespace lite { namespace kernels { namespace arm { template void scale_compute_ref(const operators::ScaleParam& param) { const dtype* x_data = param.x->mutable_data(); dtype* output_data = param.output->mutable_data(); DDim x_dims = param.x->dims(); DDim output_dims = param.output->dims(); ASSERT_EQ(x_dims.data(), output_dims.data()); bool bias_after_scale = param.bias_after_scale; float scale = param.scale; float bias = param.bias; if (!bias_after_scale) { bias *= scale; } for (int i = 0; i < output_dims.production(); i++) { output_data[i] = x_data[i] * scale + bias; } } TEST(scale_arm, init) { ScaleCompute scale; ASSERT_EQ(scale.precision(), PRECISION(kFloat)); ASSERT_EQ(scale.target(), TARGET(kARM)); } TEST(scale_arm, compute) { ScaleCompute scale; operators::ScaleParam param; lite::Tensor x; lite::Tensor output; lite::Tensor output_ref; for (auto n : {1, 3, 4, 11}) { for (auto c : {1, 3, 11, 4}) { for (auto h : {3, 1, 11, 4}) { for (auto w : {1, 3, 4, 12}) { for (auto bias_after_scale : {true, false}) { for (auto s : {-100.25f, -1.0f, 0.13f, 3840.975f}) { for (auto b : {-3075.495f, -15.f, 0.11234f, 128.15f}) { x.Resize(DDim(std::vector({n, c, h, w}))); output.Resize(DDim(std::vector({n, c, h, w}))); output_ref.Resize(DDim(std::vector({n, c, h, w}))); auto* x_data = x.mutable_data(); auto* output_data = output.mutable_data(); auto* output_ref_data = output_ref.mutable_data(); for (int i = 0; i < x.dims().production(); i++) { x_data[i] = i; } param.x = &x; param.output = &output; param.bias_after_scale = bias_after_scale; param.scale = s; param.bias = b; scale.SetParam(param); scale.Run(); param.output = &output_ref; scale_compute_ref(param); for (int i = 0; i < output.dims().production(); i++) { EXPECT_NEAR(output_data[i], output_ref_data[i], 1e-5); } } } } } } } } } TEST(scale, retrive_op) { auto scale = KernelRegistry::Global().Create("scale"); ASSERT_FALSE(scale.empty()); ASSERT_TRUE(scale.front()); } } // namespace arm } // namespace kernels } // namespace lite } // namespace paddle USE_LITE_KERNEL(scale, kARM, kFloat, kNCHW, def);