# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import typing import paddle from paddle.fluid import framework as framework class PrimOption(object): def __init__(self): self.enable_prim = False def get_status(self): return self.enable_prim def set_status(self, flag): self.enable_prim = flag prim_option = PrimOption() @framework.static_only def prim_enabled(): """ .. note:: **ONLY available in the static mode.** Shows whether the automatic differentiation mechanism based on automatic differential basic operators is ON. Defaults to OFF. Returns: flag(bool): Whether the automatic differentiation mechanism based on automatic differential basic operators is ON. Examples: .. code-block:: python import paddle from paddle.incubate.autograd import enable_prim, disable_prim, prim_enabled paddle.enable_static() enable_prim() print(prim_enabled()) # True disable_prim() print(prim_enabled()) # False """ return prim_option.get_status() @framework.static_only def enable_prim(): """ .. note:: **ONLY available in the static mode.** Turns ON automatic differentiation mechanism based on automatic differential basic operators. Examples: .. code-block:: python import paddle from paddle.incubate.autograd import enable_prim, prim_enabled paddle.enable_static() enable_prim() print(prim_enabled()) # True """ prim_option.set_status(True) @framework.static_only def disable_prim(): """ .. note:: **ONLY available in the static mode.** Turns OFF automatic differentiation mechanism based on automatic differential basic operators. Examples: .. code-block:: python import paddle from paddle.incubate.autograd import enable_prim, disable_prim, prim_enabled paddle.enable_static() enable_prim() print(prim_enabled()) # True disable_prim() print(prim_enabled()) # False """ prim_option.set_status(False) INT_DTYPE_2_STRING = { int(0): 'bool', int(1): 'int16', int(2): 'int32', int(3): 'int64', int(4): 'float16', int(5): 'float32', int(6): 'float64', int(20): 'uint8', int(21): 'int8', int(23): 'complex64', int(24): 'complex128', } def get_var_block(block, names): assert isinstance(names, list) if len(names) == 0: return None elif len(names) == 1: return block.var(names[0]) else: return [block.var(name) for name in names] def get_input_var_list(op): if op.input_names is None: return [] else: return [ get_var_block(op.block, op.input(n)) for n in sorted(op.input_names) ] def get_output_var_list(op): if op.output_names is None: return [] else: return [ get_var_block(op.block, op.output(n)) for n in sorted(op.output_names) ] def flatten(inp): if inp is None or isinstance(inp, paddle.fluid.framework.Variable): return [inp] flattened = [] for part in inp: flattened += flatten(part) return flattened def flatten_and_remove_none(inp): flattened = flatten(inp) return [var for var in flattened if var is not None] def as_tensors(xs): if isinstance(xs, framework.Variable): return (xs, ) elif isinstance(xs, typing.Sequence): return tuple(xs) else: return xs