// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/operator.h" #include "paddle/fluid/operators/svd_helper.h" #include "paddle/fluid/platform/for_range.h" #include "paddle/phi/kernels/funcs/complex_functors.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; using DDim = framework::DDim; template class SvdCPUKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { const Tensor* x = context.Input("X"); Tensor* U = context.Output("U"); Tensor* VH = context.Output("VH"); Tensor* S = context.Output("S"); int full = context.Attr("full_matrices"); /*Create Tensors and output, set the dim ...*/ auto numel = x->numel(); auto* x_data = x->data(); auto x_dims = x->dims(); int rows = x_dims[x_dims.size() - 2]; int cols = x_dims[x_dims.size() - 1]; int k = std::min(rows, cols); int col_u = full ? rows : k; int col_v = full ? cols : k; int batches = numel / (rows * cols); auto* U_out = U->mutable_data>( context.GetPlace(), size_t(batches * rows * col_u * sizeof(phi::funcs::Real))); auto* VH_out = VH->mutable_data>( context.GetPlace(), size_t(batches * col_v * cols * sizeof(phi::funcs::Real))); auto* S_out = S->mutable_data>( context.GetPlace(), size_t(batches * k * sizeof(phi::funcs::Real))); /*SVD Use the Eigen Library*/ math::BatchSvd(x_data, U_out, VH_out, S_out, rows, cols, batches, full); } }; template class SvdGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const { const framework::Tensor& U_const = *ctx.Input("U"); const framework::Tensor& VH_const = *ctx.Input("VH"); const framework::Tensor& S = *ctx.Input("S"); framework::Tensor& dX = *ctx.Output(framework::GradVarName("X")); const framework::Tensor& dU_const = *ctx.Input(framework::GradVarName("U")); const framework::Tensor& dVH_const = *ctx.Input(framework::GradVarName("VH")); const bool full = ctx.Attr("full_matrices"); int m = dX.dims()[dX.dims().size() - 2]; int n = dX.dims()[dX.dims().size() - 1]; int k = S.dims()[S.dims().size() - 1]; auto dito = math::DeviceIndependenceTensorOperations(ctx); framework::Tensor U, VH, dU, dV, dVH; if (full) { // if full_matrices is set, slice the U and VT to k columns U = dito.Slice(U_const, {-1}, {0}, {k}); VH = dito.Slice(VH_const, {-2}, {0}, {k}); dU = dito.Slice(dU_const, {-1}, {0}, {k}); dVH = dito.Slice(dVH_const, {-2}, {0}, {k}); } else { U = U_const; VH = VH_const; dU = dU_const; dVH = dVH_const; } auto s_inverse = dito.Pow(S, -1); auto s_square = dito.Pow(S, 2); auto F = dito.Sub(dito.Unsqueeze(s_square, -2), dito.Unsqueeze(s_square, -1)); F = dito.Add(F, dito.Diag(dito.Infinits({k}))); F = dito.Pow(F, -1); Tensor sigma_term; Tensor u_term; Tensor v_term; if (ctx.HasInput(framework::GradVarName("S"))) { const framework::Tensor& gS = *ctx.Input(framework::GradVarName("S")); sigma_term = dito.Mul(dito.Unsqueeze(gS, -2), U); sigma_term = dito.Matmul(sigma_term, VH); } if (ctx.HasInput(framework::GradVarName("U"))) { auto UTG = dito.Matmul(U, dU, true, false); auto GTU = dito.Matmul(dU, U, true, false); u_term = dito.Mul(dito.Mul(dito.Sub(UTG, GTU), F), dito.Unsqueeze(S, -2)); u_term = dito.Matmul(U, u_term); if (m > k) { auto project = dito.Sub(dito.Eye(m), dito.Matmul(U, U, false, true)); u_term = dito.Add(u_term, dito.Mul(dito.Matmul(project, dU), dito.Unsqueeze(s_inverse, -2))); } u_term = dito.Matmul(u_term, VH); } if (ctx.HasInput(framework::GradVarName("VH"))) { auto UTG = dito.Matmul(VH, dVH, false, true); auto GTU = dito.Matmul(dVH, VH, false, true); v_term = dito.Mul(dito.Matmul(dito.Mul(dito.Sub(UTG, GTU), F), VH), dito.Unsqueeze(S, -1)); if (n > k) { auto project = dito.Sub(dito.Eye(n), dito.Matmul(VH, VH, true, false)); v_term = dito.Add(v_term, dito.Mul(dito.Matmul(dVH, project), dito.Unsqueeze(s_inverse, -1))); } v_term = dito.Matmul(U, v_term); } dX.ShareDataWith(dito.Add(dito.Add(u_term, sigma_term), v_term)); } }; } // namespace operators } // namespace paddle