/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include "paddle/fluid/framework/tensor.h" #include "unsupported/Eigen/CXX11/Tensor" namespace paddle { namespace framework { // EigenDim converts paddle::platform::DDim into Eigen::DSizes. template struct EigenDim { using Type = Eigen::DSizes; static Type From(const DDim& dims) { PADDLE_ENFORCE_EQ(arity(dims), D, platform::errors::InvalidArgument( "Input dimension size should be equal to %d, but " "received dimension size is %d.", arity(dims), D)); Type ret; for (int64_t d = 0; d < arity(dims); d++) { ret[d] = dims[d]; } return ret; } }; // Interpret paddle::platform::Tensor as EigenTensor and EigenConstTensor. template struct EigenTensor { // TODO(qijun) Now, default type in unaligned, and we will make a benchmark on // the speed of aligned and unaligned version in future. using Type = Eigen::TensorMap>; using ConstType = Eigen::TensorMap>; static Type From(Tensor& tensor, DDim dims) { // NOLINT return Type(tensor.data(), EigenDim::From(dims)); } static Type From(Tensor& tensor) { // NOLINT return From(tensor, tensor.dims()); } // NOLINT static ConstType From(const Tensor& tensor, DDim dims) { return ConstType(tensor.data(), EigenDim::From(dims)); } static ConstType From(const Tensor& tensor) { return From(tensor, tensor.dims()); } }; template struct EigenMatrix : public EigenTensor { static typename EigenMatrix::Type Reshape(Tensor& tensor, // NOLINT int num_col_dims) { int rank = tensor.dims().size(); PADDLE_ENFORCE_EQ((num_col_dims > 0 && num_col_dims < rank), true, platform::errors::InvalidArgument( "Input dimension number(num_col_dims) must be " "between 0 and %d, but received number is %d.", rank, num_col_dims)); return EigenMatrix::From(tensor, phi::flatten_to_2d(tensor.dims(), num_col_dims)); } static typename EigenMatrix::ConstType Reshape(const Tensor& tensor, int num_col_dims) { int rank = tensor.dims().size(); PADDLE_ENFORCE_EQ((num_col_dims > 0 && num_col_dims < rank), true, platform::errors::InvalidArgument( "Input dimension number(num_col_dims) must be " "between 0 and %d, but received number is %d.", rank, num_col_dims)); return EigenMatrix::From(tensor, phi::flatten_to_2d(tensor.dims(), num_col_dims)); } }; template struct EigenVector : public EigenTensor { // Flatten reshapes a Tensor into an EigenVector. static typename EigenVector::Type Flatten(Tensor& tensor) { // NOLINT return EigenVector::From(tensor, {product(tensor.dims())}); } static typename EigenVector::ConstType Flatten( const Tensor& tensor) { // NOLINT return EigenVector::From(tensor, {product(tensor.dims())}); } }; template struct EigenScalar { // Scalar tensor (implemented as a rank-0 tensor) of scalar type T. using Type = Eigen::TensorMap< Eigen::TensorFixedSize, MajorType, IndexType>>; using ConstType = Eigen::TensorMap< Eigen::TensorFixedSize, MajorType, IndexType>>; static Type From(Tensor& tensor) { return Type(tensor.data()); } // NOLINT static ConstType From(const Tensor& tensor) { return ConstType(tensor.data()); } }; // Define Tensor with 32-bit index. template using Tensor32BitIndex = Eigen::TensorMap, Eigen::Aligned>; template Eigen::DSizes To32BitDims(const DSizes& in) { Eigen::DSizes out; for (int i = 0; i < DSizes::count; ++i) { out[i] = in[i]; } return out; } template Tensor32BitIndex To32BitIndex(EigenTensor in) { using RetType = Tensor32BitIndex; return RetType(in.data(), To32BitDims(in.dimensions())); } } // namespace framework } // namespace paddle