/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #include "Function.h" #include "FunctionTest.h" namespace paddle { enum TestType { FORWARD_TEST = 0, BACKWARD_INPUT_TEST = 1, BACKWARD_FILTER_TEST = 2, }; template class ConvolutionTest { public: ConvolutionTest(const std::string& conv1, const std::string& conv2, TestType type, std::string algo = "auto") { for (size_t batchSize : {1, 32}) { for (size_t inputSize : {7, 14, 54}) { for (size_t filterSize : {1, 3, 5}) { for (size_t inputChannels : {3, 64}) { for (size_t outputChannels : {3, 64, 128}) { if (inputChannels < outputChannels) break; for (size_t stride : {1, 2}) { for (size_t padding : {0, 1}) { if (padding >= filterSize) break; size_t outputSize = (inputSize - filterSize + 2 * padding + stride) / stride; LOG(INFO) << " batchSize=" << batchSize << " inputChannels=" << inputChannels << " inputHeight=" << inputSize << " inputWidth=" << inputSize << " outputChannels=" << outputChannels << " filterHeight=" << filterSize << " filterWidth=" << filterSize << " outputHeight=" << outputSize << " outputWidth=" << outputSize << " stride=" << stride << " padding=" << padding; std::vector paddings = {padding, padding}; std::vector strides = {stride, stride}; Compare2Function test( conv1, conv2, FuncConfig() .set("paddings", paddings) .set("strides", strides) .set("groups", (size_t)1) .set("algo", algo)); TensorShape input{ batchSize, inputChannels, inputSize, inputSize}; TensorShape filter{ outputChannels, inputChannels, filterSize, filterSize}; TensorShape output{ batchSize, outputChannels, outputSize, outputSize}; if (type == FORWARD_TEST) { test.addInputs(BufferArg(VALUE_TYPE_FLOAT, input)); test.addInputs(BufferArg(VALUE_TYPE_FLOAT, filter)); test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, output)); test.run(); } else if (type == BACKWARD_INPUT_TEST) { test.addInputs(BufferArg(VALUE_TYPE_FLOAT, output)); test.addInputs(BufferArg(VALUE_TYPE_FLOAT, filter)); test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, input)); test.run(); } else if (type == BACKWARD_FILTER_TEST) { test.addInputs(BufferArg(VALUE_TYPE_FLOAT, output)); test.addInputs(BufferArg(VALUE_TYPE_FLOAT, input)); test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, filter)); test.run(); } } } } } } } } } }; TEST(Forward, GEMM) { ConvolutionTest test( "NaiveConv-CPU", "GemmConv-CPU", FORWARD_TEST); } #ifndef PADDLE_ONLY_CPU TEST(Forward, GEMM2) { ConvolutionTest test( "GemmConv-CPU", "GemmConv-GPU", FORWARD_TEST); } TEST(BackwardInput, GEMM) { ConvolutionTest test( "GemmConvGradInput-CPU", "GemmConvGradInput-GPU", BACKWARD_INPUT_TEST); } TEST(BackwardFilter, GEMM) { ConvolutionTest test( "GemmConvGradFilter-CPU", "GemmConvGradFilter-GPU", BACKWARD_FILTER_TEST); } #endif } // namespace paddle