# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import division import math import sys import random import cv2 import numpy as np import numbers import types import collections import warnings import traceback from . import functional as F if sys.version_info < (3, 3): Sequence = collections.Sequence Iterable = collections.Iterable else: Sequence = collections.abc.Sequence Iterable = collections.abc.Iterable __all__ = [ "Compose", "BatchCompose", "Resize", "RandomResizedCrop", "CenterCropResize", "CenterCrop", "RandomHorizontalFlip", "RandomVerticalFlip", "Permute", "Normalize", "GaussianNoise", "BrightnessTransform", "SaturationTransform", "ContrastTransform", "HueTransform", "ColorJitter", "RandomCrop", "RandomErasing", "Pad", "RandomRotate", "Grayscale", ] class Compose(object): """ Composes several transforms together use for composing list of transforms together for a dataset transform. Args: transforms (list): List of transforms to compose. Returns: A compose object which is callable, __call__ for this Compose object will call each given :attr:`transforms` sequencely. Examples: .. code-block:: python from paddle.incubate.hapi.datasets import Flowers from paddle.incubate.hapi.vision.transforms import Compose, ColorJitter, Resize transform = Compose([ColorJitter(), Resize(size=608)]) flowers = Flowers(mode='test', transform=transform) for i in range(10): sample = flowers[i] print(sample[0].shape, sample[1]) """ def __init__(self, transforms): self.transforms = transforms def __call__(self, *data): for f in self.transforms: try: # multi-fileds in a sample if isinstance(data, Sequence): data = f(*data) # single field in a sample, call transform directly else: data = f(data) except Exception as e: stack_info = traceback.format_exc() print("fail to perform transform [{}] with error: " "{} and stack:\n{}".format(f, e, str(stack_info))) raise e return data def __repr__(self): format_string = self.__class__.__name__ + '(' for t in self.transforms: format_string += '\n' format_string += ' {0}'.format(t) format_string += '\n)' return format_string class BatchCompose(object): """Composes several batch transforms together Args: transforms (list): List of transforms to compose. these transforms perform on batch data. Examples: .. code-block:: python import numpy as np from paddle.io import DataLoader from paddle.incubate.hapi import set_device from paddle.incubate.hapi.datasets import Flowers from paddle.incubate.hapi.vision.transforms import Compose, BatchCompose, Resize class NormalizeBatch(object): def __init__(self, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], scale=True, channel_first=True): self.mean = mean self.std = std self.scale = scale self.channel_first = channel_first if not (isinstance(self.mean, list) and isinstance(self.std, list) and isinstance(self.scale, bool)): raise TypeError("{}: input type is invalid.".format(self)) from functools import reduce if reduce(lambda x, y: x * y, self.std) == 0: raise ValueError('{}: std is invalid!'.format(self)) def __call__(self, samples): for i in range(len(samples)): samples[i] = list(samples[i]) im = samples[i][0] im = im.astype(np.float32, copy=False) mean = np.array(self.mean)[np.newaxis, np.newaxis, :] std = np.array(self.std)[np.newaxis, np.newaxis, :] if self.scale: im = im / 255.0 im -= mean im /= std if self.channel_first: im = im.transpose((2, 0, 1)) samples[i][0] = im return samples transform = Compose([Resize((500, 500))]) flowers_dataset = Flowers(mode='test', transform=transform) device = set_device('cpu') collate_fn = BatchCompose([NormalizeBatch()]) loader = DataLoader( flowers_dataset, batch_size=4, places=device, return_list=True, collate_fn=collate_fn) for data in loader: # do something break """ def __init__(self, transforms=[]): self.transforms = transforms def __call__(self, data): for f in self.transforms: try: data = f(data) except Exception as e: stack_info = traceback.format_exc() print("fail to perform batch transform [{}] with error: " "{} and stack:\n{}".format(f, e, str(stack_info))) raise e # sample list to batch data batch = list(zip(*data)) return batch class Resize(object): """Resize the input Image to the given size. Args: size (int|list|tuple): Desired output size. If size is a sequence like (h, w), output size will be matched to this. If size is an int, smaller edge of the image will be matched to this number. i.e, if height > width, then image will be rescaled to (size * height / width, size) interpolation (int): Interpolation mode of resize. Default: cv2.INTER_LINEAR. Examples: .. code-block:: python import numpy as np from paddle.incubate.hapi.vision.transforms import Resize transform = Resize(size=224) fake_img = np.random.rand(500, 500, 3).astype('float32') fake_img = transform(fake_img) print(fake_img.shape) """ def __init__(self, size, interpolation=cv2.INTER_LINEAR): assert isinstance(size, int) or (isinstance(size, Iterable) and len(size) == 2) self.size = size self.interpolation = interpolation def __call__(self, img): return F.resize(img, self.size, self.interpolation) class RandomResizedCrop(object): """Crop the input data to random size and aspect ratio. A crop of random size (default: of 0.08 to 1.0) of the original size and a random aspect ratio (default: of 3/4 to 1.33) of the original aspect ratio is made. After applying crop transfrom, the input data will be resized to given size. Args: output_size (int|list|tuple): Target size of output image, with (height, width) shape. scale (list|tuple): Range of size of the origin size cropped. Default: (0.08, 1.0) ratio (list|tuple): Range of aspect ratio of the origin aspect ratio cropped. Default: (0.75, 1.33) Examples: .. code-block:: python import numpy as np from paddle.incubate.hapi.vision.transforms import RandomResizedCrop transform = RandomResizedCrop(224) fake_img = np.random.rand(500, 500, 3).astype('float32') fake_img = transform(fake_img) print(fake_img.shape) """ def __init__(self, output_size, scale=(0.08, 1.0), ratio=(3. / 4, 4. / 3), interpolation=cv2.INTER_LINEAR): if isinstance(output_size, int): self.output_size = (output_size, output_size) else: self.output_size = output_size assert (scale[0] <= scale[1]), "scale should be of kind (min, max)" assert (ratio[0] <= ratio[1]), "ratio should be of kind (min, max)" self.scale = scale self.ratio = ratio self.interpolation = interpolation def _get_params(self, image, attempts=10): height, width, _ = image.shape area = height * width for _ in range(attempts): target_area = np.random.uniform(*self.scale) * area log_ratio = tuple(math.log(x) for x in self.ratio) aspect_ratio = math.exp(np.random.uniform(*log_ratio)) w = int(round(math.sqrt(target_area * aspect_ratio))) h = int(round(math.sqrt(target_area / aspect_ratio))) if 0 < w <= width and 0 < h <= height: x = np.random.randint(0, width - w + 1) y = np.random.randint(0, height - h + 1) return x, y, w, h # Fallback to central crop in_ratio = float(width) / float(height) if in_ratio < min(self.ratio): w = width h = int(round(w / min(self.ratio))) elif in_ratio > max(self.ratio): h = height w = int(round(h * max(self.ratio))) else: # whole image w = width h = height x = (width - w) // 2 y = (height - h) // 2 return x, y, w, h def __call__(self, img): x, y, w, h = self._get_params(img) cropped_img = img[y:y + h, x:x + w] return F.resize(cropped_img, self.output_size, self.interpolation) class CenterCropResize(object): """Crops to center of image with padding then scales size. Args: size (int|list|tuple): Target size of output image, with (height, width) shape. crop_padding (int): Center crop with the padding. Default: 32. interpolation (int): Interpolation mode of resize. Default: cv2.INTER_LINEAR. Examples: .. code-block:: python import numpy as np from paddle.incubate.hapi.vision.transforms import CenterCropResize transform = CenterCropResize(224) fake_img = np.random.rand(500, 500, 3).astype('float32') fake_img = transform(fake_img) print(fake_img.shape) """ def __init__(self, size, crop_padding=32, interpolation=cv2.INTER_LINEAR): if isinstance(size, int): self.size = (size, size) else: self.size = size self.crop_padding = crop_padding self.interpolation = interpolation def _get_params(self, img): h, w = img.shape[:2] size = min(self.size) c = int(size / (size + self.crop_padding) * min((h, w))) x = (h + 1 - c) // 2 y = (w + 1 - c) // 2 return c, x, y def __call__(self, img): c, x, y = self._get_params(img) cropped_img = img[x:x + c, y:y + c, :] return F.resize(cropped_img, self.size, self.interpolation) class CenterCrop(object): """Crops the given the input data at the center. Args: output_size: Target size of output image, with (height, width) shape. Examples: .. code-block:: python import numpy as np from paddle.incubate.hapi.vision.transforms import CenterCrop transform = CenterCrop(224) fake_img = np.random.rand(500, 500, 3).astype('float32') fake_img = transform(fake_img) print(fake_img.shape) """ def __init__(self, output_size): if isinstance(output_size, int): self.output_size = (output_size, output_size) else: self.output_size = output_size def _get_params(self, img): th, tw = self.output_size h, w, _ = img.shape assert th <= h and tw <= w, "output size is bigger than image size" x = int(round((w - tw) / 2.0)) y = int(round((h - th) / 2.0)) return x, y def __call__(self, img): x, y = self._get_params(img) th, tw = self.output_size return img[y:y + th, x:x + tw] class RandomHorizontalFlip(object): """Horizontally flip the input data randomly with a given probability. Args: prob (float): Probability of the input data being flipped. Default: 0.5 Examples: .. code-block:: python import numpy as np from paddle.incubate.hapi.vision.transforms import RandomHorizontalFlip transform = RandomHorizontalFlip(224) fake_img = np.random.rand(500, 500, 3).astype('float32') fake_img = transform(fake_img) print(fake_img.shape) """ def __init__(self, prob=0.5): self.prob = prob def __call__(self, img): if np.random.random() < self.prob: return F.flip(img, code=1) return img class RandomVerticalFlip(object): """Vertically flip the input data randomly with a given probability. Args: prob (float): Probability of the input data being flipped. Default: 0.5 Examples: .. code-block:: python import numpy as np from paddle.incubate.hapi.vision.transforms import RandomVerticalFlip transform = RandomVerticalFlip(224) fake_img = np.random.rand(500, 500, 3).astype('float32') fake_img = transform(fake_img) print(fake_img.shape) """ def __init__(self, prob=0.5): self.prob = prob def __call__(self, img): if np.random.random() < self.prob: return F.flip(img, code=0) return img class Normalize(object): """Normalize the input data with mean and standard deviation. Given mean: ``(M1,...,Mn)`` and std: ``(S1,..,Sn)`` for ``n`` channels, this transform will normalize each channel of the input data. ``output[channel] = (input[channel] - mean[channel]) / std[channel]`` Args: mean (int|float|list): Sequence of means for each channel. std (int|float|list): Sequence of standard deviations for each channel. Examples: .. code-block:: python import numpy as np from paddle.incubate.hapi.vision.transforms import Normalize normalize = Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) fake_img = np.random.rand(3, 500, 500).astype('float32') fake_img = normalize(fake_img) print(fake_img.shape) """ def __init__(self, mean=0.0, std=1.0): if isinstance(mean, numbers.Number): mean = [mean, mean, mean] if isinstance(std, numbers.Number): std = [std, std, std] self.mean = np.array(mean, dtype=np.float32).reshape(len(mean), 1, 1) self.std = np.array(std, dtype=np.float32).reshape(len(std), 1, 1) def __call__(self, img): return (img - self.mean) / self.std class Permute(object): """Change input data to a target mode. For example, most transforms use HWC mode image, while the Neural Network might use CHW mode input tensor. Input image should be HWC mode and an instance of numpy.ndarray. Args: mode (str): Output mode of input. Default: "CHW". to_rgb (bool): Convert 'bgr' image to 'rgb'. Default: True. Examples: .. code-block:: python import numpy as np from paddle.incubate.hapi.vision.transforms import Permute transform = Permute() fake_img = np.random.rand(500, 500, 3).astype('float32') fake_img = transform(fake_img) print(fake_img.shape) """ def __init__(self, mode="CHW", to_rgb=True): assert mode in [ "CHW" ], "Only support 'CHW' mode, but received mode: {}".format(mode) self.mode = mode self.to_rgb = to_rgb def __call__(self, img): if self.to_rgb: img = img[..., ::-1] if self.mode == "CHW": return img.transpose((2, 0, 1)) return img class GaussianNoise(object): """Add random gaussian noise to the input data. Gaussian noise is generated with given mean and std. Args: mean (float): Gaussian mean used to generate noise. std (float): Gaussian standard deviation used to generate noise. Examples: .. code-block:: python import numpy as np from paddle.incubate.hapi.vision.transforms import GaussianNoise transform = GaussianNoise() fake_img = np.random.rand(500, 500, 3).astype('float32') fake_img = transform(fake_img) print(fake_img.shape) """ def __init__(self, mean=0.0, std=1.0): self.mean = np.array(mean, dtype=np.float32) self.std = np.array(std, dtype=np.float32) def __call__(self, img): dtype = img.dtype noise = np.random.normal(self.mean, self.std, img.shape) * 255 img = img + noise.astype(np.float32) return np.clip(img, 0, 255).astype(dtype) class BrightnessTransform(object): """Adjust brightness of the image. Args: value (float): How much to adjust the brightness. Can be any non negative number. 0 gives the original image Examples: .. code-block:: python import numpy as np from paddle.incubate.hapi.vision.transforms import BrightnessTransform transform = BrightnessTransform(0.4) fake_img = np.random.rand(500, 500, 3).astype('float32') fake_img = transform(fake_img) print(fake_img.shape) """ def __init__(self, value): if value < 0: raise ValueError("brightness value should be non-negative") self.value = value def __call__(self, img): if self.value == 0: return img dtype = img.dtype img = img.astype(np.float32) alpha = np.random.uniform(max(0, 1 - self.value), 1 + self.value) img = img * alpha return img.clip(0, 255).astype(dtype) class ContrastTransform(object): """Adjust contrast of the image. Args: value (float): How much to adjust the contrast. Can be any non negative number. 0 gives the original image Examples: .. code-block:: python import numpy as np from paddle.incubate.hapi.vision.transforms import ContrastTransform transform = ContrastTransform(0.4) fake_img = np.random.rand(500, 500, 3).astype('float32') fake_img = transform(fake_img) print(fake_img.shape) """ def __init__(self, value): if value < 0: raise ValueError("contrast value should be non-negative") self.value = value def __call__(self, img): if self.value == 0: return img dtype = img.dtype img = img.astype(np.float32) alpha = np.random.uniform(max(0, 1 - self.value), 1 + self.value) img = img * alpha + cv2.cvtColor(img, cv2.COLOR_BGR2GRAY).mean() * ( 1 - alpha) return img.clip(0, 255).astype(dtype) class SaturationTransform(object): """Adjust saturation of the image. Args: value (float): How much to adjust the saturation. Can be any non negative number. 0 gives the original image Examples: .. code-block:: python import numpy as np from paddle.incubate.hapi.vision.transforms import SaturationTransform transform = SaturationTransform(0.4) fake_img = np.random.rand(500, 500, 3).astype('float32') fake_img = transform(fake_img) print(fake_img.shape) """ def __init__(self, value): if value < 0: raise ValueError("saturation value should be non-negative") self.value = value def __call__(self, img): if self.value == 0: return img dtype = img.dtype img = img.astype(np.float32) alpha = np.random.uniform(max(0, 1 - self.value), 1 + self.value) gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) gray_img = gray_img[..., np.newaxis] img = img * alpha + gray_img * (1 - alpha) return img.clip(0, 255).astype(dtype) class HueTransform(object): """Adjust hue of the image. Args: value (float): How much to adjust the hue. Can be any number between 0 and 0.5, 0 gives the original image Examples: .. code-block:: python import numpy as np from paddle.incubate.hapi.vision.transforms import HueTransform transform = HueTransform(0.4) fake_img = np.random.rand(500, 500, 3).astype('float32') fake_img = transform(fake_img) print(fake_img.shape) """ def __init__(self, value): if value < 0 or value > 0.5: raise ValueError("hue value should be in [0.0, 0.5]") self.value = value def __call__(self, img): if self.value == 0: return img dtype = img.dtype img = img.astype(np.uint8) hsv_img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV_FULL) h, s, v = cv2.split(hsv_img) alpha = np.random.uniform(-self.value, self.value) h = h.astype(np.uint8) # uint8 addition take cares of rotation across boundaries with np.errstate(over="ignore"): h += np.uint8(alpha * 255) hsv_img = cv2.merge([h, s, v]) return cv2.cvtColor(hsv_img, cv2.COLOR_HSV2BGR_FULL).astype(dtype) class ColorJitter(object): """Randomly change the brightness, contrast, saturation and hue of an image. Args: brightness: How much to jitter brightness. Chosen uniformly from [max(0, 1 - brightness), 1 + brightness]. Should be non negative numbers. contrast: How much to jitter contrast. Chosen uniformly from [max(0, 1 - contrast), 1 + contrast]. Should be non negative numbers. saturation: How much to jitter saturation. Chosen uniformly from [max(0, 1 - saturation), 1 + saturation]. Should be non negative numbers. hue: How much to jitter hue. Chosen uniformly from [-hue, hue]. Should have 0<= hue <= 0.5. Examples: .. code-block:: python import numpy as np from paddle.incubate.hapi.vision.transforms import ColorJitter transform = ColorJitter(0.4) fake_img = np.random.rand(500, 500, 3).astype('float32') fake_img = transform(fake_img) print(fake_img.shape) """ def __init__(self, brightness=0, contrast=0, saturation=0, hue=0): transforms = [] if brightness != 0: transforms.append(BrightnessTransform(brightness)) if contrast != 0: transforms.append(ContrastTransform(contrast)) if saturation != 0: transforms.append(SaturationTransform(saturation)) if hue != 0: transforms.append(HueTransform(hue)) random.shuffle(transforms) self.transforms = Compose(transforms) def __call__(self, img): return self.transforms(img) class RandomCrop(object): """Crops the given CV Image at a random location. Args: size (sequence|int): Desired output size of the crop. If size is an int instead of sequence like (h, w), a square crop (size, size) is made. padding (int|sequence|optional): Optional padding on each border of the image. If a sequence of length 4 is provided, it is used to pad left, top, right, bottom borders respectively. Default: 0. pad_if_needed (boolean|optional): It will pad the image if smaller than the desired size to avoid raising an exception. Default: False. Examples: .. code-block:: python import numpy as np from paddle.incubate.hapi.vision.transforms import RandomCrop transform = RandomCrop(224) fake_img = np.random.rand(500, 500, 3).astype('float32') fake_img = transform(fake_img) print(fake_img.shape) """ def __init__(self, size, padding=0, pad_if_needed=False): if isinstance(size, numbers.Number): self.size = (int(size), int(size)) else: self.size = size self.padding = padding self.pad_if_needed = pad_if_needed def _get_params(self, img, output_size): """Get parameters for ``crop`` for a random crop. Args: img (numpy.ndarray): Image to be cropped. output_size (tuple): Expected output size of the crop. Returns: tuple: params (i, j, h, w) to be passed to ``crop`` for random crop. """ h, w, _ = img.shape th, tw = output_size if w == tw and h == th: return 0, 0, h, w try: i = random.randint(0, h - th) except ValueError: i = random.randint(h - th, 0) try: j = random.randint(0, w - tw) except ValueError: j = random.randint(w - tw, 0) return i, j, th, tw def __call__(self, img): """ Args: img (numpy.ndarray): Image to be cropped. Returns: numpy.ndarray: Cropped image. """ if self.padding > 0: img = F.pad(img, self.padding) # pad the width if needed if self.pad_if_needed and img.shape[1] < self.size[1]: img = F.pad(img, (int((1 + self.size[1] - img.shape[1]) / 2), 0)) # pad the height if needed if self.pad_if_needed and img.shape[0] < self.size[0]: img = F.pad(img, (0, int((1 + self.size[0] - img.shape[0]) / 2))) i, j, h, w = self._get_params(img, self.size) return img[i:i + h, j:j + w] class RandomErasing(object): """Randomly selects a rectangle region in an image and erases its pixels. ``Random Erasing Data Augmentation`` by Zhong et al. See https://arxiv.org/pdf/1708.04896.pdf Args: prob (float): probability that the random erasing operation will be performed. scale (tuple): range of proportion of erased area against input image. Should be (min, max). ratio (float): range of aspect ratio of erased area. value (float|list|tuple): erasing value. If a single int, it is used to erase all pixels. If a tuple of length 3, it is used to erase R, G, B channels respectively. Default: 0. Examples: .. code-block:: python import numpy as np from paddle.incubate.hapi.vision.transforms import RandomCrop transform = RandomCrop(224) fake_img = np.random.rand(500, 500, 3).astype('float32') fake_img = transform(fake_img) print(fake_img.shape) """ def __init__(self, prob=0.5, scale=(0.02, 0.4), ratio=0.3, value=[0., 0., 0.]): assert isinstance(value, ( float, Sequence )), "Expected type of value in [float, list, tupue], but got {}".format( type(value)) assert scale[0] <= scale[1], "scale range should be of kind (min, max)!" if isinstance(value, float): self.value = [value, value, value] else: self.value = value self.p = prob self.scale = scale self.ratio = ratio def __call__(self, img): if random.uniform(0, 1) > self.p: return img for _ in range(100): area = img.shape[0] * img.shape[1] target_area = random.uniform(self.scale[0], self.scale[1]) * area aspect_ratio = random.uniform(self.ratio, 1 / self.ratio) h = int(round(math.sqrt(target_area * aspect_ratio))) w = int(round(math.sqrt(target_area / aspect_ratio))) if w < img.shape[1] and h < img.shape[0]: x1 = random.randint(0, img.shape[0] - h) y1 = random.randint(0, img.shape[1] - w) if len(img.shape) == 3 and img.shape[2] == 3: img[x1:x1 + h, y1:y1 + w, 0] = self.value[0] img[x1:x1 + h, y1:y1 + w, 1] = self.value[1] img[x1:x1 + h, y1:y1 + w, 2] = self.value[2] else: img[x1:x1 + h, y1:y1 + w] = self.value[1] return img return img class Pad(object): """Pads the given CV Image on all sides with the given "pad" value. Args: padding (int|list|tuple): Padding on each border. If a single int is provided this is used to pad all borders. If tuple of length 2 is provided this is the padding on left/right and top/bottom respectively. If a tuple of length 4 is provided this is the padding for the left, top, right and bottom borders respectively. fill (int|list|tuple): Pixel fill value for constant fill. Default is 0. If a tuple of length 3, it is used to fill R, G, B channels respectively. This value is only used when the padding_mode is constant padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant. ``constant`` means pads with a constant value, this value is specified with fill. ``edge`` means pads with the last value at the edge of the image. ``reflect`` means pads with reflection of image (without repeating the last value on the edge) padding ``[1, 2, 3, 4]`` with 2 elements on both sides in reflect mode will result in ``[3, 2, 1, 2, 3, 4, 3, 2]``. ``symmetric`` menas pads with reflection of image (repeating the last value on the edge) padding ``[1, 2, 3, 4]`` with 2 elements on both sides in symmetric mode will result in ``[2, 1, 1, 2, 3, 4, 4, 3]``. Examples: .. code-block:: python import numpy as np from paddle.incubate.hapi.vision.transforms import Pad transform = Pad(2) fake_img = np.random.rand(500, 500, 3).astype('float32') fake_img = transform(fake_img) print(fake_img.shape) """ def __init__(self, padding, fill=0, padding_mode='constant'): assert isinstance(padding, (numbers.Number, list, tuple)) assert isinstance(fill, (numbers.Number, str, list, tuple)) assert padding_mode in ['constant', 'edge', 'reflect', 'symmetric'] if isinstance(padding, collections.Sequence) and len(padding) not in [2, 4]: raise ValueError( "Padding must be an int or a 2, or 4 element tuple, not a " + "{} element tuple".format(len(padding))) self.padding = padding self.fill = fill self.padding_mode = padding_mode def __call__(self, img): """ Args: img (numpy.ndarray): Image to be padded. Returns: numpy.ndarray: Padded image. """ return F.pad(img, self.padding, self.fill, self.padding_mode) class RandomRotate(object): """Rotates the image by angle. Args: degrees (sequence or float or int): Range of degrees to select from. If degrees is a number instead of sequence like (min, max), the range of degrees will be (-degrees, +degrees) clockwise order. interpolation (int|optional): Interpolation mode of resize. Default: cv2.INTER_LINEAR. expand (bool|optional): Optional expansion flag. Default: False. If true, expands the output to make it large enough to hold the entire rotated image. If false or omitted, make the output image the same size as the input image. Note that the expand flag assumes rotation around the center and no translation. center (2-tuple|optional): Optional center of rotation. Origin is the upper left corner. Default is the center of the image. Examples: .. code-block:: python import numpy as np from paddle.incubate.hapi.vision.transforms import RandomRotate transform = RandomRotate(90) fake_img = np.random.rand(500, 400, 3).astype('float32') fake_img = transform(fake_img) print(fake_img.shape) """ def __init__(self, degrees, interpolation=cv2.INTER_LINEAR, expand=False, center=None): if isinstance(degrees, numbers.Number): if degrees < 0: raise ValueError( "If degrees is a single number, it must be positive.") self.degrees = (-degrees, degrees) else: if len(degrees) != 2: raise ValueError( "If degrees is a sequence, it must be of len 2.") self.degrees = degrees self.interpolation = interpolation self.expand = expand self.center = center def _get_params(self, degrees): """Get parameters for ``rotate`` for a random rotation. Returns: sequence: params to be passed to ``rotate`` for random rotation. """ angle = random.uniform(degrees[0], degrees[1]) return angle def __call__(self, img): """ img (np.ndarray): Image to be rotated. Returns: np.ndarray: Rotated image. """ angle = self._get_params(self.degrees) return F.rotate(img, angle, self.interpolation, self.expand, self.center) class Grayscale(object): """Converts image to grayscale. Args: output_channels (int): (1 or 3) number of channels desired for output image Returns: CV Image: Grayscale version of the input. - If output_channels == 1 : returned image is single channel - If output_channels == 3 : returned image is 3 channel with r == g == b Examples: .. code-block:: python import numpy as np from paddle.incubate.hapi.vision.transforms import Grayscale transform = Grayscale() fake_img = np.random.rand(500, 400, 3).astype('float32') fake_img = transform(fake_img) print(fake_img.shape) """ def __init__(self, output_channels=1): self.output_channels = output_channels def __call__(self, img): """ Args: img (numpy.ndarray): Image to be converted to grayscale. Returns: numpy.ndarray: Randomly grayscaled image. """ return F.to_grayscale(img, num_output_channels=self.output_channels)