// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/imperative/tracer.h" #include #include #include #include #include #include "paddle/fluid/framework/var_type_inference.h" #include "paddle/fluid/operators/math/math_function.h" #include "paddle/fluid/platform/device_context.h" #include "paddle/fluid/platform/enforce.h" namespace paddle { namespace imperative { void CreateGradOp(const framework::OpDesc& op_desc, const std::unordered_set& no_grad_set, const std::vector& grad_sub_block, std::vector* grad_op_descs, std::unordered_map* grad_to_var) { PADDLE_ENFORCE(grad_op_descs->empty()); const framework::OpInfo& op_info = framework::OpInfoMap::Instance().Get(op_desc.Type()); if (!op_info.grad_op_maker_) return; std::vector> descs = op_info.GradOpMaker()(op_desc, no_grad_set, grad_to_var, grad_sub_block); for (auto& desc : descs) { grad_op_descs->emplace_back(desc.release()); } } void InitGrad(VarBase* var, platform::DeviceContext* dev_ctx) { PADDLE_ENFORCE_NOT_NULL(var, "Could not get valid var base"); PADDLE_ENFORCE_NOT_NULL(dev_ctx, "Could not get valid device from forward op"); if (var->grads_ == nullptr) { auto& var_t = var->var_->Get(); var->grads_ = new VarBase(var->GradName(), framework::proto::VarType::FP32, framework::vectorize(var_t.dims()), dev_ctx->GetPlace(), true, false); auto grad_t = var->grads_->var_->GetMutable(); operators::math::set_constant(*dev_ctx, grad_t, 0.0); } } platform::Place GetExpectedPlace(platform::Place place, VarBasePtrMap inputs) { platform::Place result = place; for (auto it : inputs) { for (VarBase* var : it.second) { platform::Place tmp_place = var->var_->Get().place(); if (!platform::is_same_place(tmp_place, result)) { PADDLE_THROW( "Input variable should keep in the same place: %s, but get place: " "%s of input %s instead", result, tmp_place, it.first); } } } return result; } framework::VariableNameMap CreateInputVarNameMap( const OpBase* op, const VarBasePtrMap& varbase_map) { framework::VariableNameMap result; auto& info_map = framework::OpInfoMap::Instance(); auto* op_info = info_map.GetNullable(op->Type()); if (op_info == nullptr || op_info->proto_ == nullptr) { return result; } for (auto& in : op_info->Proto().inputs()) { auto it = varbase_map.find(in.name()); if (it == varbase_map.end()) { PADDLE_ENFORCE(in.dispensable()); result[in.name()] = {}; } else { auto var_vector = it->second; std::vector args; args.reserve(var_vector.size()); for (VarBase* var_base : var_vector) { args.emplace_back(var_base->Name()); } result[in.name()] = args; } } return result; } framework::VariableNameMap CreateOutputVarNameMap( const OpBase* op, const VarBasePtrMap& varbase_map) { framework::VariableNameMap result; auto& info_map = framework::OpInfoMap::Instance(); auto* op_info = info_map.GetNullable(op->Type()); if (op_info == nullptr || op_info->proto_ == nullptr) { return result; } for (auto& out : op_info->Proto().outputs()) { auto it = varbase_map.find(out.name()); if (it == varbase_map.end()) { PADDLE_ENFORCE(out.dispensable()); result[out.name()] = {}; } else { auto var_vector = it->second; std::vector args; args.reserve(var_vector.size()); for (VarBase* var_base : var_vector) { args.emplace_back(var_base->Name()); } result[out.name()] = args; } } return result; } Tracer::Tracer(framework::BlockDesc* root_block) : root_block_(root_block) {} std::set Tracer::Trace(OpBase* op, const VarBasePtrMap& inputs, VarBasePtrMap* outputs, framework::AttributeMap attrs_map, const platform::Place expected_place, const bool stop_gradient) { framework::VariableValueMap invars_map; framework::VariableValueMap outvars_map; // Construct input_vars_map and output_vars_map std::map current_vars_map; op->input_vars_ = inputs; for (auto it : op->input_vars_) { auto& invars = invars_map[it.first]; invars.reserve(it.second.size()); for (VarBase* inp : it.second) { PADDLE_ENFORCE_NOT_NULL(inp->var_, "op %s input %s nullptr", op->Type(), inp->Name()); invars.emplace_back(inp->var_.get()); if (!stop_gradient) { current_vars_map[inp->Name()] = inp; } VLOG(3) << "input var name: " << inp->Name() << " inited: " << inp->var_->IsInitialized() << " stop_grad: " << inp->IsStopGradient(); } op->TrackPreOp(it.first, it.second); } op->output_vars_ = *outputs; for (auto it : op->output_vars_) { auto& outvars = outvars_map[it.first]; const std::vector& outputs = it.second; outvars.reserve(outputs.size()); for (size_t i = 0U; i < outputs.size(); ++i) { VarBase* out = outputs[i]; outvars.emplace_back(out->var_.get()); out->TrackPreOp(op, it.first, i, stop_gradient); if (!stop_gradient) { current_vars_map[out->Name()] = out; } VLOG(3) << "output var name: " << out->Name() << " inited: " << out->var_->IsInitialized() << " stop_grad: " << out->IsStopGradient(); } } // Check attrs and create op framework::VariableNameMap invars_name_map = CreateInputVarNameMap(op, inputs); framework::VariableNameMap outvars_name_map = CreateOutputVarNameMap(op, *outputs); auto& info = framework::OpInfoMap::Instance().Get(op->Type()); if (info.Checker() != nullptr) { info.Checker()->Check(&attrs_map); } std::unique_ptr op_base = framework::OpRegistry::CreateOp(op->Type(), invars_name_map, outvars_name_map, attrs_map); if (info.infer_var_type_) { RuntimeInferVarTypeContext infer_var_type_ctx(&inputs, outputs, &attrs_map); info.infer_var_type_(&infer_var_type_ctx); } // TODO(minqiyang): Support infer var type in imperative mode // Run forward op VLOG(3) << "tracer running " << op->Type(); framework::RuntimeContext ctx(invars_map, outvars_map); // TODO(panyx0718): Cache p. framework::OperatorWithKernel* op_kernel = dynamic_cast(op_base.get()); PADDLE_ENFORCE_NOT_NULL(op_kernel, "only support op with kernel"); framework::Scope scope; op->place_ = GetExpectedPlace(expected_place, inputs); PreparedOp prepared_op = PreparedOp::Prepare(ctx, *op_kernel, op->place_); prepared_op.op.RuntimeInferShape(scope, op->place_, ctx); prepared_op.func( framework::ExecutionContext(prepared_op.op, scope, *prepared_op.dev_ctx, prepared_op.ctx, prepared_op.kernel_configs)); // construct backward op std::set vars_saved_for_backward; if (!stop_gradient) { VLOG(5) << "start construct backward op"; // construct grad op descs op->attrs_ = attrs_map; std::unique_ptr fwd_op_desc(new framework::OpDesc( op->Type(), invars_name_map, outvars_name_map, attrs_map)); std::unique_ptr> grad_to_var( new std::unordered_map()); // NOTE(minqiyang): We don't support control flow op in imperative now // Add grad_block_ when we want to support it CreateGradOp(*fwd_op_desc, {}, {}, &op->grad_op_descs_, grad_to_var.get()); VLOG(5) << "create grad op desc: " << op->grad_op_descs_[0]->Type(); const size_t grad_op_count = op->grad_op_descs_.size(); op->grad_input_vars_.resize(grad_op_count); op->grad_output_vars_.resize(grad_op_count); for (size_t i = 0; i < grad_op_count; ++i) { framework::OpDesc* grad_op_desc = op->grad_op_descs_[i]; for (auto it : grad_op_desc->Inputs()) { auto& grad_in_vars = op->grad_input_vars_[i][it.first]; grad_in_vars.reserve(it.second.size()); for (const std::string& grad_invar : it.second) { auto var_it = grad_to_var->find(grad_invar); if (var_it == grad_to_var->end()) { auto fwd_var_it = current_vars_map.find(grad_invar); PADDLE_ENFORCE(fwd_var_it != current_vars_map.end()); // Forward inputs or outputs. grad_in_vars.emplace_back(fwd_var_it->second); } else { VarBase* var = current_vars_map[var_it->second]; InitGrad(var, prepared_op.GetDeviceContext()); // Douts. grad_in_vars.emplace_back(var->grads_); } vars_saved_for_backward.insert(it.first); } } for (auto it : grad_op_desc->Outputs()) { auto& grad_out_vars = op->grad_output_vars_[i][it.first]; for (const std::string& grad_outvar : it.second) { auto var_it = grad_to_var->find(grad_outvar); PADDLE_ENFORCE(var_it != grad_to_var->end(), "Could not found the grad op output var, should this " "operator %s's stop gradient be True", op->Type()); VarBase* var = current_vars_map[var_it->second]; InitGrad(var, prepared_op.GetDeviceContext()); grad_out_vars.push_back(var->grads_); VLOG(3) << "grads output var name: " << var->name_; } } } } return vars_saved_for_backward; } std::vector Tracer::PyTrace(OpBase* op, const std::vector& inputs, bool stop_gradient) { VLOG(3) << "py_trace " << op->Type(); op->input_vars_[PyLayer::kFwdInp] = inputs; std::vector> ret_vars = PyLayer::Apply(op->forward_id_, inputs); op->TrackPreOp(PyLayer::kFwdInp, inputs); std::vector& outputs = op->output_vars_[PyLayer::kFwdOut]; outputs.reserve(ret_vars.size()); for (size_t i = 0U; i != ret_vars.size(); ++i) { VarBase* out = new VarBase(string::Sprintf("%s_out_%d", op->Type(), i), std::move(ret_vars[i]), nullptr, stop_gradient); outputs.emplace_back(out); out->TrackPreOp(op, PyLayer::kFwdOut, i, stop_gradient); } if (!stop_gradient) { VLOG(5) << "start construct backward op"; op->grad_input_vars_.resize(1); op->grad_output_vars_.resize(1); auto& grad_input_vars = op->grad_input_vars_[0][framework::GradVarName(PyLayer::kFwdInp)]; auto& grad_output_vars = op->grad_output_vars_[0][framework::GradVarName(PyLayer::kFwdOut)]; for (VarBase* inp : inputs) { grad_input_vars.push_back(inp); } for (VarBase* out : outputs) { grad_input_vars.push_back(out); } // TODO(minqiyang): Add GPU support for PyLayer, only support CPU now platform::CPUPlace place; for (VarBase* out : outputs) { InitGrad(out, platform::DeviceContextPool::Instance().Get(place)); grad_input_vars.push_back(out->grads_); } for (VarBase* inp : inputs) { InitGrad(inp, platform::DeviceContextPool::Instance().Get(place)); grad_output_vars.push_back(inp->grads_); } } return outputs; } } // namespace imperative } // namespace paddle