/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/instance_norm_op.h" #include #include #include #include "paddle/fluid/framework/data_layout.h" #include "paddle/fluid/framework/op_version_registry.h" #include "paddle/fluid/operators/math/math_function.h" namespace paddle { namespace operators { void InstanceNormOp::InferShape(framework::InferShapeContext *ctx) const { OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "InstanceNorm"); OP_INOUT_CHECK(ctx->HasOutput("Y"), "Output", "Y", "InstanceNorm"); OP_INOUT_CHECK(ctx->HasOutput("SavedMean"), "Output", "SavedMean", "InstanceNorm"); OP_INOUT_CHECK(ctx->HasOutput("SavedVariance"), "Output", "SavedVariance", "InstanceNorm"); const auto x_dims = ctx->GetInputDim("X"); PADDLE_ENFORCE_NE(framework::product(x_dims), 0, platform::errors::PreconditionNotMet( "The Input variable X(%s) has not " "been initialized. You may need to confirm " "if you put exe.run(startup_program) " "after optimizer.minimize function.", ctx->Inputs("X").front())); PADDLE_ENFORCE_GE( x_dims.size(), 2, platform::errors::InvalidArgument( "ShapeError: the dimension of input X must " "greater than or equal to 2. But received: the shape of input " "X = [%s], the dimension of input X =[%d]", x_dims, x_dims.size())); PADDLE_ENFORCE_LE( x_dims.size(), 5, platform::errors::InvalidArgument( "ShapeError: the dimension of input X must " "smaller than or equal to 5, But received: the shape of input " "X = [%s], the dimension of input X = [%d]", x_dims, x_dims.size())); auto N = x_dims[0]; auto C = x_dims[1]; auto NxC = N * C; if (ctx->HasInput("Scale")) { auto scale_dim = ctx->GetInputDim("Scale"); PADDLE_ENFORCE_EQ( scale_dim.size(), 1UL, platform::errors::InvalidArgument( "ShapeError: the dimension of scale must equal to 1." "But received: the shape of scale is [%s], the dimension " "of scale is [%d]", scale_dim, scale_dim.size())); bool check = !((!ctx->IsRuntime()) && (framework::product(scale_dim) <= 0)); if (check) { PADDLE_ENFORCE_EQ(scale_dim[0], C, platform::errors::InvalidArgument( "ShapeError: the shape of scale must equal to [%d]" "But received: the shape of scale is [%d]", C, scale_dim[0])); } } if (ctx->HasInput("Bias")) { auto bias_dim = ctx->GetInputDim("Bias"); PADDLE_ENFORCE_EQ( bias_dim.size(), 1UL, platform::errors::InvalidArgument( "ShapeError: the dimension of bias must equal to 1." "But received: the shape of bias is [%s],the dimension " "of bias is [%d]", bias_dim, bias_dim.size())); bool check = !((!ctx->IsRuntime()) && (framework::product(bias_dim) <= 0)); if (check) { PADDLE_ENFORCE_EQ(bias_dim[0], C, platform::errors::InvalidArgument( "ShapeError: the shape of bias must equal to [%d]" "But received: the shape of bias is [%d]", C, bias_dim[0])); } } ctx->SetOutputDim("Y", x_dims); ctx->SetOutputDim("SavedMean", {NxC}); ctx->SetOutputDim("SavedVariance", {NxC}); ctx->ShareLoD("X", "Y"); } framework::OpKernelType InstanceNormOp::GetExpectedKernelType( const framework::ExecutionContext &ctx) const { auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X"); // By default, the type of the scale, bias, mean, // and var tensors should both be float. (For float or float16 input tensor) // or double (For double input tensor). auto in_param_type = framework::proto::VarType::FP32; if (input_data_type == framework::proto::VarType::FP64) { in_param_type = framework::proto::VarType::FP64; } if (ctx.HasInput("Scale")) { PADDLE_ENFORCE_EQ(in_param_type, ctx.Input("Scale")->type(), platform::errors::InvalidArgument( "Scale input should be of float type")); } if (ctx.HasInput("Bias")) { PADDLE_ENFORCE_EQ(in_param_type, ctx.Input("Bias")->type(), platform::errors::InvalidArgument( "Bias input should be of float type")); } return framework::OpKernelType(input_data_type, ctx.GetPlace()); } void InstanceNormOpMaker::Make() { AddAttr("epsilon", "") .SetDefault(1e-5) .AddCustomChecker([](const float &epsilon) { PADDLE_ENFORCE_EQ(epsilon >= 0.0f && epsilon <= 0.001f, true, platform::errors::InvalidArgument( "'epsilon' should be between 0.0 and 0.001.")); }); AddInput("X", "The input tensor"); AddInput("Scale", "Scale is a 1-dimensional tensor of size C " "that is applied to the output") .AsDispensable(); AddInput("Bias", "Bias is a 1-dimensional tensor of size C " "that is applied to the output") .AsDispensable(); AddOutput("Y", "result after normalization"); AddOutput("SavedMean", "Mean of the current mini batch, " "will apply to output when training") .AsIntermediate() .AsExtra(); AddOutput("SavedVariance", "Variance of the current mini batch, " "will apply to output when training") .AsIntermediate() .AsExtra(); AddComment(R"DOC( Instance Normalization. Instance Norm has been implemented as disscussed in the paper: https://arxiv.org/pdf/1607.08022.pdf Can be used as a normalizer function for conv2d and fully_connected operations. The required data format for this layer is as following: NCHW `[batch, in_channels, in_height, in_width]` )DOC"); } template class InstanceNormKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &ctx) const override { T epsilon = static_cast(ctx.Attr("epsilon")); const auto *x = ctx.Input("X"); const auto &x_dims = x->dims(); const int N = x_dims[0]; const int C = x_dims[1]; const int NxC = N * C; const int sample_size = x->numel() / N / C; auto *y = ctx.Output("Y"); auto *saved_mean = ctx.Output("SavedMean"); auto *saved_variance = ctx.Output("SavedVariance"); auto &dev_ctx = ctx.template device_context(); auto *place = dev_ctx.eigen_device(); Eigen::DSizes shape(NxC, sample_size); // Once eigen on Windows is updated, the if branch can be removed. #ifndef EIGEN_HAS_INDEX_LIST Eigen::DSizes bcast(1, sample_size); Eigen::DSizes C_shape(C, 1); Eigen::DSizes NxC_shape(NxC, 1); Eigen::DSizes rdims(1); #else Eigen::IndexList, int> bcast; bcast.set(1, sample_size); Eigen::IndexList> C_shape; C_shape.set(0, C); Eigen::IndexList> NxC_shape; NxC_shape.set(0, NxC); Eigen::IndexList> rdims; #endif math::SetConstant set_constant; saved_mean->mutable_data(ctx.GetPlace()); saved_variance->mutable_data(ctx.GetPlace()); set_constant(dev_ctx, saved_mean, static_cast(0)); set_constant(dev_ctx, saved_variance, static_cast(0)); auto saved_mean_a = framework::EigenVector::Flatten(*saved_mean); auto saved_mean_e = saved_mean_a.reshape(NxC_shape); auto saved_variance_a = framework::EigenVector::Flatten(*saved_variance); auto saved_variance_e = saved_variance_a.reshape(NxC_shape); auto x_e = framework::EigenVector::Flatten(*x); auto x_arr = x_e.reshape(shape); saved_mean_e.device(*place) = x_arr.mean(rdims); auto saved_variance_arr = (x_arr - saved_mean_e.broadcast(bcast)).square().mean(rdims) + epsilon; saved_variance_e.device(*place) = saved_variance_arr.sqrt().inverse(); const auto *scale = ctx.Input("Scale"); const auto *bias = ctx.Input("Bias"); Tensor scale_data; Tensor bias_data; if (!scale) { scale_data.mutable_data({C}, ctx.GetPlace()); set_constant(dev_ctx, &scale_data, static_cast(1)); } if (!bias) { bias_data.mutable_data({C}, ctx.GetPlace()); set_constant(dev_ctx, &bias_data, static_cast(0)); } auto scale_e = scale ? framework::EigenVector::Flatten(*scale) : framework::EigenVector::Flatten( const_cast(scale_data)); auto scale_arr = scale_e.reshape(C_shape); auto bias_e = bias ? framework::EigenVector::Flatten(*bias) : framework::EigenVector::Flatten( const_cast(bias_data)); auto bias_arr = bias_e.reshape(C_shape); y->mutable_data(ctx.GetPlace()); auto y_e = framework::EigenVector::Flatten(*y); auto y_arr = y_e.reshape(shape); // (x - mean) * inv_std * scale + bias Eigen::DSizes bcast_param(N, sample_size); y_arr.device(*place) = (x_arr - saved_mean_e.broadcast(bcast)) * saved_variance_e.broadcast(bcast) * scale_arr.broadcast(bcast_param) + bias_arr.broadcast(bcast_param); } }; void InstanceNormGradOp::InferShape(framework::InferShapeContext *ctx) const { OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "InstanceNormGrad"); OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Y")), "Input", framework::GradVarName("Y"), "InstanceNormGrad"); OP_INOUT_CHECK(ctx->HasInput("SavedMean"), "Input", "SavedMean", "InstanceNormGrad"); OP_INOUT_CHECK(ctx->HasInput("SavedVariance"), "Input", "SavedVariance", "InstanceNormGrad"); // check output OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")), "Output", framework::GradVarName("X"), "InstanceNormGrad"); const auto x_dims = ctx->GetInputDim("X"); const int C = x_dims[1]; ctx->SetOutputDim(framework::GradVarName("X"), x_dims); if (ctx->HasOutput(framework::GradVarName("Scale"))) { ctx->SetOutputDim(framework::GradVarName("Scale"), {C}); } if (ctx->HasOutput(framework::GradVarName("Bias"))) { ctx->SetOutputDim(framework::GradVarName("Bias"), {C}); } } framework::OpKernelType InstanceNormGradOp::GetExpectedKernelType( const framework::ExecutionContext &ctx) const { const auto *var = ctx.InputVar(framework::GradVarName("Y")); if (var == nullptr) { PADDLE_THROW( platform::errors::NotFound("cannot find gradient variable of Y")); } const Tensor *t = nullptr; if (var->IsType()) { t = &var->Get(); } else if (var->IsType()) { t = &var->Get(); } if (t == nullptr) { PADDLE_THROW( platform::errors::InvalidArgument("gradient variable of Y is empty")); } return framework::OpKernelType( OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace()); } template class InstanceNormGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &ctx) const override { const auto *x = ctx.Input("X"); const auto *d_y = ctx.Input(framework::GradVarName("Y")); const auto *scale = ctx.Input("Scale"); const auto *saved_mean = ctx.Input("SavedMean"); const auto *saved_inv_variance = ctx.Input("SavedVariance"); const auto &x_dims = x->dims(); const int N = x_dims[0]; const int C = x_dims[1]; const int NxC = N * C; const int sample_size = x->numel() / N / C; auto *d_x = ctx.Output(framework::GradVarName("X")); auto *d_scale = ctx.Output(framework::GradVarName("Scale")); auto *d_bias = ctx.Output(framework::GradVarName("Bias")); d_x->mutable_data(ctx.GetPlace()); auto &dev_ctx = ctx.template device_context(); auto *place = dev_ctx.eigen_device(); Eigen::DSizes rshape(NxC, sample_size); Eigen::DSizes param_shape(N, C); Eigen::DSizes shape(NxC, sample_size); #ifndef EIGEN_HAS_INDEX_LIST Eigen::DSizes rdims(0); Eigen::DSizes mean_rdims(1); Eigen::DSizes bcast(1, sample_size); Eigen::DSizes C_shape(C, 1); Eigen::DSizes NxC_shape(NxC, 1); #else Eigen::IndexList> rdims; Eigen::IndexList> mean_rdims; Eigen::IndexList, int> bcast; bcast.set(1, sample_size); Eigen::IndexList> C_shape; C_shape.set(0, C); Eigen::IndexList> NxC_shape; NxC_shape.set(0, NxC); #endif math::SetConstant set_constant; Tensor scale_data; if (!scale) { scale_data.mutable_data({C}, ctx.GetPlace()); set_constant(dev_ctx, &scale_data, static_cast(1)); } auto scale_e = scale ? framework::EigenVector::Flatten(*scale) : framework::EigenVector::Flatten( const_cast(scale_data)); auto mean_e = framework::EigenVector::Flatten(*saved_mean); auto inv_var_e = framework::EigenVector::Flatten(*saved_inv_variance); auto dy_e = framework::EigenVector::Flatten(*d_y); auto x_e = framework::EigenVector::Flatten(*x); auto scale_arr = scale_e.reshape(C_shape); auto mean_arr = mean_e.reshape(NxC_shape); auto inv_var_arr = inv_var_e.reshape(NxC_shape); auto dy_arr = dy_e.reshape(shape); auto x_arr = x_e.reshape(shape); auto tmp = (x_arr - mean_arr.eval().broadcast(bcast)) * inv_var_arr.eval().broadcast(bcast); // math: d_bias = np.sum(d_y, axis=(n,h,w)) // math: d_scale = np.sum((X-mean) / inv_std * dy, axis=(n, h,w)) if (d_scale && d_bias) { d_scale->mutable_data(ctx.GetPlace()); d_bias->mutable_data(ctx.GetPlace()); set_constant(dev_ctx, d_scale, static_cast(0)); set_constant(dev_ctx, d_bias, static_cast(0)); auto d_scale_e = framework::EigenVector::Flatten(*d_scale); auto d_scale_data = d_scale_e.reshape(C_shape); auto d_bias_e = framework::EigenVector::Flatten(*d_bias); auto d_bias_data = d_bias_e.reshape(C_shape); d_bias_data.device(*place) = dy_arr.sum(mean_rdims).reshape(param_shape).sum(rdims); d_scale_data.device(*place) = (tmp * dy_arr).sum(mean_rdims).reshape(param_shape).sum(rdims); } auto dy_mean = dy_arr.mean(mean_rdims).reshape(NxC_shape).eval().broadcast(bcast); Eigen::DSizes bcast_param(N, sample_size); set_constant(dev_ctx, d_x, static_cast(0)); // math: d_x = scale * inv_var * d_y - scale * inv_var * np.sum(d_y, // axis=(h,w)) // - scale * (X - mean) * inv_var.pow(3) * np.sum(d_y * (X - // mean), // axis=(h,w)) auto dx_e = framework::EigenVector::Flatten(*d_x); auto dx_arr = dx_e.reshape(shape); dx_arr.device(*place) = scale_arr.broadcast(bcast_param) * inv_var_arr.broadcast(bcast) * (dy_arr - dy_mean - tmp * (dy_arr * tmp) .mean(mean_rdims) .reshape(NxC_shape) .eval() .broadcast(bcast)); } }; void InstanceNormDoubleGradOp::InferShape( framework::InferShapeContext *ctx) const { OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "InstanceNormDoubleGrad"); OP_INOUT_CHECK(ctx->HasInput("SavedMean"), "Input", "SavedMean", "InstanceNormDoubleGrad"); OP_INOUT_CHECK(ctx->HasInput("SavedVariance"), "Input", "SavedVariance", "InstanceNormDoubleGrad"); OP_INOUT_CHECK(ctx->HasInput("DDX"), "Input", "DDX", "InstanceNormDoubleGrad"); OP_INOUT_CHECK(ctx->HasInput("DY"), "Input", "DY", "InstanceNormDoubleGrad"); // check output OP_INOUT_CHECK(ctx->HasOutput("DX"), "Output", "DX", "InstanceNormDoubleGrad"); const auto x_dims = ctx->GetInputDim("X"); const int C = x_dims[1]; if (ctx->HasOutput("DX")) { ctx->SetOutputDim("DX", x_dims); } if (ctx->HasOutput("DScale")) { ctx->SetOutputDim("DScale", {C}); } if (ctx->HasOutput("DDY")) { ctx->ShareDim("X", "DDY"); } } framework::OpKernelType InstanceNormDoubleGradOp::GetExpectedKernelType( const framework::ExecutionContext &ctx) const { const auto *var = ctx.InputVar("DY"); if (var == nullptr) { PADDLE_THROW( platform::errors::NotFound("cannot find gradient variable of Y")); } const Tensor *t = nullptr; if (var->IsType()) { t = &var->Get(); } else if (var->IsType()) { t = &var->Get(); } if (t == nullptr) { PADDLE_THROW( platform::errors::InvalidArgument("gradient variable of Y is empty")); } return framework::OpKernelType( OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace()); } template class InstanceNormDoubleGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &ctx) const override { const auto *X = ctx.Input("X"); const auto *Scale = ctx.Input("Scale"); const auto *dY = ctx.Input("DY"); const auto *Saved_mean = ctx.Input("SavedMean"); const auto *Saved_variance = ctx.Input("SavedVariance"); const auto *ddX = ctx.Input("DDX"); const auto *ddScale = ctx.Input("DDScale"); const auto *ddBias = ctx.Input("DDBias"); auto *dX = ctx.Output("DX"); auto *dScale = ctx.Output("DScale"); auto *ddY = ctx.Output("DDY"); auto &dev_ctx = ctx.template device_context(); math::SetConstant set_constant; const auto &x_dims = X->dims(); int N, C, H, W, D; ExtractNCWHD(x_dims, DataLayout::kNCHW, &N, &C, &H, &W, &D); const int sample_size = X->numel() / N / C; const int NxC = N * C; const T *mean_data = Saved_mean->data(); const T *inv_var_data = Saved_variance->data(); Tensor mean_tensor; Tensor inv_var_tensor; ConstEigenArrayMap x_arr(X->data(), sample_size, NxC); ConstEigenVectorArrayMap mean_arr(mean_data, NxC); ConstEigenVectorArrayMap inv_var_arr(inv_var_data, NxC); Tensor mean_tile; mean_tile.Resize({sample_size, NxC}); mean_tile.mutable_data(ctx.GetPlace()); EigenArrayMap mean_tile_data(mean_tile.mutable_data(ctx.GetPlace()), sample_size, NxC); Tensor inv_var_tile; inv_var_tile.Resize({sample_size, NxC}); inv_var_tile.mutable_data(ctx.GetPlace()); EigenArrayMap inv_var_tile_data( inv_var_tile.mutable_data(ctx.GetPlace()), sample_size, NxC); mean_tile_data = mean_arr.transpose().replicate(sample_size, 1); inv_var_tile_data = inv_var_arr.transpose().replicate(sample_size, 1); Tensor Scale_data; if (!Scale) { Scale_data.mutable_data({C}, ctx.GetPlace()); set_constant(dev_ctx, &Scale_data, static_cast(1)); } ConstEigenVectorArrayMap scale_arr( Scale ? Scale->data() : Scale_data.data(), C); Tensor scale_tile; scale_tile.Resize({sample_size, NxC}); scale_tile.mutable_data(ctx.GetPlace()); EigenArrayMap scale_tile_data(scale_tile.mutable_data(ctx.GetPlace()), sample_size, NxC); scale_tile_data = scale_arr.transpose().replicate(sample_size, N); ConstEigenArrayMap dy_arr(dY->data(), sample_size, NxC); ConstEigenArrayMap ddx_arr(ddX->data(), sample_size, NxC); // math: dx = scale * ((x - mean) * inv_var / HxW * (np.mean(ddx, // axis=(h,w)) * // np.sum(dy, axis=(h,w)) - // np.sum(dy * ddx, axis=(h,w)) + 3 * np.mean(dy * (x - mean), // axis=(h,w)) * inv_var.pow(2) * // np.sum(ddx * (x - mean), axis=(h,w))) + inv_var.pow(3) / HxW * // np.sum(ddx * (x - mean)) * // (np.mean(dy, axis=(h,w)) - dy) + inv_var.pow(3) / HxW * // np.sum(dy, // axis=(h,w)) * (x - mean) * // (np.mean(ddx, axis=(h,w)) - ddx)) + ddr * (dy * inv_var - // inv_var * // np.mean(dy, axis=(h,w)) - // inv_var.pow(3) * (x - mean) * np.mean(dy * (x - mean), // axis=(h,w))) Tensor x_sub_mean_mul_invstd; x_sub_mean_mul_invstd.Resize({sample_size, NxC}); x_sub_mean_mul_invstd.mutable_data(ctx.GetPlace()); EigenArrayMap x_sub_mean_mul_invstd_arr( x_sub_mean_mul_invstd.mutable_data(ctx.GetPlace()), sample_size, NxC); x_sub_mean_mul_invstd_arr = (x_arr - mean_tile_data) * inv_var_tile_data; if (dX) { dX->mutable_data(ctx.GetPlace()); set_constant(dev_ctx, dX, static_cast(0)); EigenArrayMap dx_arr(dX->mutable_data(ctx.GetPlace()), sample_size, NxC); if (ddX) { dx_arr += x_sub_mean_mul_invstd_arr * inv_var_tile_data * inv_var_tile_data / sample_size * (ddx_arr.colwise().sum() * dy_arr.colwise().sum() / sample_size - (dy_arr * ddx_arr).colwise().sum() + 3. * (dy_arr * x_sub_mean_mul_invstd_arr).colwise().sum() * (ddx_arr * x_sub_mean_mul_invstd_arr).colwise().sum() / sample_size); dx_arr += (ddx_arr * x_sub_mean_mul_invstd_arr).colwise().sum() / sample_size * inv_var_tile_data * inv_var_tile_data * (dy_arr.colwise().sum() / sample_size - dy_arr); dx_arr += (dy_arr * x_sub_mean_mul_invstd_arr).colwise().sum() / sample_size * inv_var_tile_data * inv_var_tile_data * (ddx_arr.colwise().sum() / sample_size - ddx_arr); dx_arr = scale_tile_data * dx_arr; } if (ddScale) { ConstEigenVectorArrayMap ddscale_arr(ddScale->data(), C); Tensor ddscale_tile; ddscale_tile.Resize({sample_size, NxC}); ddscale_tile.mutable_data(ctx.GetPlace()); EigenArrayMap ddscale_tile_data( ddscale_tile.mutable_data(ctx.GetPlace()), sample_size, NxC); ddscale_tile_data = ddscale_arr.transpose().replicate(sample_size, N); dx_arr += (dy_arr * inv_var_tile_data - dy_arr.colwise().sum() / sample_size * inv_var_tile_data - x_sub_mean_mul_invstd_arr * inv_var_tile_data * (dy_arr * x_sub_mean_mul_invstd_arr).colwise().sum() / sample_size) * ddscale_tile_data; } } if (dScale) { // math: dscale = inv_var * (dy - np.mean(dy, axis=(h,w) - (x-mean) * // inv_var.pow(2) * np.mean(dy * (x-mean), axis=(h,w)))) * ddx dScale->mutable_data(ctx.GetPlace()); set_constant(dev_ctx, dScale, static_cast(0)); EigenVectorArrayMap dscale_arr(dScale->mutable_data(ctx.GetPlace()), C); if (ddX) { Tensor first_grad; first_grad.Resize({sample_size, NxC}); first_grad.mutable_data(ctx.GetPlace()); set_constant(dev_ctx, &first_grad, static_cast(0)); EigenArrayMap first_grad_arr( first_grad.mutable_data(ctx.GetPlace()), sample_size, NxC); first_grad_arr += inv_var_tile_data * (dy_arr - dy_arr.colwise().sum().replicate(sample_size, 1) / sample_size - x_sub_mean_mul_invstd_arr * (dy_arr * x_sub_mean_mul_invstd_arr) .colwise() .sum() .replicate(sample_size, 1) / sample_size); first_grad_arr = first_grad_arr * ddx_arr; for (int nc = 0; nc < NxC; ++nc) { int c = nc % C; dscale_arr(c) += first_grad_arr.colwise().sum()(nc); } } } if (ddY) { // math: ddy = (x - mean) * inv_var * ddscale + ddbias + // scale * inv_var * (ddx - (x - mean) * inv_var.pow(2) * // np.mean(ddx * (x - mean), axis=(h,w))) ddY->mutable_data(ctx.GetPlace()); set_constant(dev_ctx, ddY, static_cast(0)); EigenArrayMap ddy_arr(ddY->mutable_data(ctx.GetPlace()), sample_size, NxC); if (ddX) { ddy_arr += scale_tile_data * inv_var_tile_data * (ddx_arr - ddx_arr.colwise().sum() / sample_size - x_sub_mean_mul_invstd_arr * (ddx_arr * x_sub_mean_mul_invstd_arr).colwise().sum() / sample_size); } if (ddScale && ddBias) { ConstEigenVectorArrayMap ddscale_arr(ddScale->data(), C); Tensor ddscale_tile; ddscale_tile.Resize({sample_size, NxC}); ddscale_tile.mutable_data(ctx.GetPlace()); EigenArrayMap ddscale_tile_data( ddscale_tile.mutable_data(ctx.GetPlace()), sample_size, NxC); ddscale_tile_data = ddscale_arr.transpose().replicate(sample_size, N); ConstEigenVectorArrayMap ddbias_arr(ddBias->data(), C); Tensor ddbias_tile; ddbias_tile.Resize({sample_size, NxC}); ddbias_tile.mutable_data(ctx.GetPlace()); EigenArrayMap ddbias_tile_data( ddbias_tile.mutable_data(ctx.GetPlace()), sample_size, NxC); ddbias_tile_data = ddbias_arr.transpose().replicate(sample_size, N); ddy_arr += x_sub_mean_mul_invstd_arr * ddscale_tile_data; ddy_arr += ddbias_tile_data; } } } }; DECLARE_INPLACE_OP_INFERER(InstanceNormDoubleGradOpInplaceInferer, {"DY", "DDY"}); } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OPERATOR(instance_norm, ops::InstanceNormOp, ops::InstanceNormOpMaker, ops::InstanceNormOpInferVarType, ops::InstanceNormGradMaker, ops::InstanceNormGradMaker); REGISTER_OPERATOR(instance_norm_grad, ops::InstanceNormGradOp, ops::InstanceNormDoubleGradMaker, ops::InstanceNormDoubleGradMaker); REGISTER_OPERATOR(instance_norm_grad_grad, ops::InstanceNormDoubleGradOp, ops::InstanceNormDoubleGradOpInplaceInferer); REGISTER_OP_CPU_KERNEL( instance_norm, ops::InstanceNormKernel, ops::InstanceNormKernel); REGISTER_OP_CPU_KERNEL( instance_norm_grad, ops::InstanceNormGradKernel, ops::InstanceNormGradKernel); REGISTER_OP_CPU_KERNEL( instance_norm_grad_grad, ops::InstanceNormDoubleGradKernel, ops::InstanceNormDoubleGradKernel); REGISTER_OP_VERSION(instance_norm) .AddCheckpoint( R"ROC( Change dispensable of attribute from False to True in instance_norm. )ROC", paddle::framework::compatible::OpVersionDesc() .ModifyAttr( "Bias", "The arg 'dispensable' of Input 'Bias' is changed: from " "'False' to 'True'.", true) .ModifyAttr( "Scale", "The arg 'dispensable' of Input 'Scale' is changed: from " "'False' to 'True'.", true));