/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "MKLDNNTester.h" #include "paddle/gserver/layers/MKLDNNBase.h" #include "paddle/gserver/layers/MKLDNNLayer.h" #include "paddle/trainer/Trainer.h" namespace paddle { // init data layer and test layer of both dnn and reference void MKLDNNTester::reset(const TestConfig& dnn, const TestConfig& ref, size_t batchSize) { const bool trans = false; const bool useGpu = false; // clear configs_.clear(); layerNames_.clear(); dataLayers_.clear(); datas_.clear(); layerMaps_.clear(); parameters_.clear(); testLayers_.clear(); // resize configs_.resize(NUM); layerNames_.resize(NUM); dataLayers_.resize(NUM); datas_.resize(NUM); layerMaps_.resize(NUM); parameters_.resize(NUM); testLayers_.resize(NUM); // reset configs and layer names configs_[DNN] = dnn; configs_[REF] = ref; layerNames_[DNN] = "mkldnn"; // the first is mkldnn layer layerNames_[REF] = "reference"; // second is reference layer // reset others for (size_t i = 0; i < NUM; ++i) { configs_[i].layerConfig.set_name(layerNames_[i]); initDataLayer(configs_[i], &(dataLayers_[i]), &(datas_[i]), &(layerMaps_[i]), layerNames_[i], batchSize, trans, useGpu); initTestLayer( configs_[i], &(layerMaps_[i]), &(parameters_[i]), &(testLayers_[i])); } refLayer_ = testLayers_[REF]; dnnLayer_ = testLayers_[DNN]; EXPECT_EQ(dataLayers_[DNN].size(), dataLayers_[REF].size()); EXPECT_EQ(parameters_[DNN].size(), parameters_[REF].size()); setInputImgSize(); // for comparison with Paddle reference results, // need manually add cpu device output for test MKLDNNLayerPtr dnnLayer = std::dynamic_pointer_cast(dnnLayer_); if (dnnLayer) { dnnLayer->addOutputArgument(CPU_DEVICE); } } void MKLDNNTester::setInputImgSize() { for (size_t n = 0; n < dataLayers_.size(); ++n) { for (size_t i = 0; i < dataLayers_[n].size(); ++i) { // TODO(TJ): fix me when concat and elewise ready dataLayers_[n][i]->getOutput().setFrameHeight(ih_); dataLayers_[n][i]->getOutput().setFrameWidth(iw_); } } } // init randome parameters of ref, and copy to mkldnn void MKLDNNTester::randomWgtDatas() { EXPECT_EQ(parameters_[DNN].size(), parameters_[REF].size()); for (size_t i = 0; i < parameters_[REF].size(); ++i) { const VectorPtr& dnnValue = parameters_[DNN][i]->getBuf(PARAMETER_VALUE); const VectorPtr& refValue = parameters_[REF][i]->getBuf(PARAMETER_VALUE); parameters_[REF][i]->randomize(); dnnValue->copyFrom(*refValue); VLOG(MKLDNN_TESTS) << "Random weight " << parameters_[DNN][i]->getName(); printVector(dnnValue); } } // random botdata of ref layer and copy same to mkldnn void MKLDNNTester::randomBotDatas() { CHECK_EQ(dataLayers_.size(), NUM); for (size_t i = 0; i < dataLayers_[DNN].size(); ++i) { dataLayers_[REF][i]->getOutputValue()->randomizeUniform(); dataLayers_[DNN][i]->getOutputValue()->copyFrom( *(dataLayers_[REF][i]->getOutputValue())); VLOG(MKLDNN_TESTS) << "Random Foward, InputValue " << i; printMatrix(dataLayers_[REF][i]->getOutputValue()); } } void MKLDNNTester::randomTopDiffs() { refLayer_->getOutputGrad()->randomizeUniform(); dnnLayer_->getOutput(CPU_DEVICE) .grad->copyFrom(*(refLayer_->getOutputGrad())); VLOG(MKLDNN_TESTS) << "Random Backward, OutputGrad"; printMatrix(refLayer_->getOutputGrad()); } void MKLDNNTester::checkForward() { VLOG(MKLDNN_TESTS) << "Check Forward"; printTopDatas(); double delta = compareMatrix(dnnLayer_->getOutputValue(), refLayer_->getOutputValue()); EXPECT_LE(fabs(delta), eps_); } void MKLDNNTester::checkBackwardData() { VLOG(MKLDNN_TESTS) << "Check Backward Data"; // TODO(TJ): uncomment me when batch norm ready // const bool isBN = dnnLayer_->getType() == "mkldnn_batch_norm"; for (size_t i = 0; i < dataLayers_[DNN].size(); ++i) { const MatrixPtr& dnnDiff = dataLayers_[DNN][i]->getOutputGrad(); const MatrixPtr& refDiff = dataLayers_[REF][i]->getOutputGrad(); VLOG(MKLDNN_ALL) << "MKLDNN Backward Result: InputGrad " << i; printMatrix(dnnDiff); VLOG(MKLDNN_ALL) << "Reference Backward Result: InputGrad " << i; printMatrix(refDiff); double delta = compareMatrix(dnnDiff, refDiff); EXPECT_LE(fabs(delta), eps_); // TODO(TJ): uncomment me when batch norm ready // if (isBN) { // // the other two inputs in batch norm are for moving mean and var // break; // } } } void MKLDNNTester::checkBackwardWgts() { VLOG(MKLDNN_TESTS) << "Check Backward Weight"; CHECK_EQ(parameters_[DNN].size(), parameters_[REF].size()); vector dnnWgts; // used to temply save mkldnn weights saveWgt(parameters_[DNN], dnnWgts); MKLDNNLayerPtr dnnLayer = std::dynamic_pointer_cast(dnnLayer_); if (dnnLayer) { dnnLayer->convertWeightsToPaddle(); } for (size_t i = 0; i < parameters_[DNN].size(); ++i) { const VectorPtr& dnn = parameters_[DNN][i]->getBuf(PARAMETER_VALUE); const VectorPtr& ref = parameters_[REF][i]->getBuf(PARAMETER_VALUE); VLOG(MKLDNN_ALL) << "MKLDNN Result: weight value" << parameters_[DNN][i]->getName(); printVector(dnn); VLOG(MKLDNN_ALL) << "Reference Result: weight value " << parameters_[REF][i]->getName(); printVector(ref); double delta = compareVector(dnn, ref); EXPECT_LE(fabs(delta), eps_); } VLOG(MKLDNN_ALL) << "Restore dnn weights before comapre"; restoreWgt(dnnWgts, parameters_[DNN]); } void MKLDNNTester::saveWgt(const vector& from, vector& to) { const bool useGpu = false; to.resize(from.size()); for (size_t i = 0; i < to.size(); ++i) { const VectorPtr& wgt = from[i]->getBuf(PARAMETER_VALUE); to[i] = Vector::create(wgt->getSize(), useGpu); to[i]->copyFrom(*wgt); } } void MKLDNNTester::restoreWgt(const vector& from, vector& to) { CHECK_EQ(from.size(), to.size()); for (size_t i = 0; i < from.size(); ++i) { const VectorPtr& wgt = to[i]->getBuf(PARAMETER_VALUE); wgt->copyFrom(*from[i]); } } // clear parameters grad void MKLDNNTester::clearWgtDiffs(size_t id) { CHECK_LE(id, parameters_.size()); for (size_t n = 0; n < parameters_.size(); ++n) { if (id == n || id == parameters_.size()) { for (size_t i = 0; i < parameters_[n].size(); ++i) { const VectorPtr& grad = parameters_[n][i]->getBuf(PARAMETER_GRADIENT); if (grad) { grad->zeroMem(); } } } } } void MKLDNNTester::clearBotDiffs(size_t id) { CHECK_LE(id, dataLayers_.size()); for (size_t n = 0; n < dataLayers_.size(); ++n) { if (id == n || id == dataLayers_.size()) { // clear inputs layers of this specific layer for (size_t i = 0; i < dataLayers_[n].size(); ++i) { dataLayers_[n][i]->getOutputGrad()->zeroMem(); } } } } void MKLDNNTester::clearTopDatas(size_t id) { CHECK_LE(id, testLayers_.size()); for (size_t i = 0; i < testLayers_.size(); ++i) { if (id == i || id == testLayers_.size()) { testLayers_[i]->getOutputValue()->zeroMem(); } } } void MKLDNNTester::printTopDatas() { if (!log_) { return; } for (int n = 0; n < NUM; ++n) { VLOG(MKLDNN_ALL) << testLayers_[n]->getType() << " Forward Result: OutputValue"; printMatrix(testLayers_[n]->getOutputValue()); } } void MKLDNNTester::printMatrix(const MatrixPtr& m) { if (!log_) { return; } std::ostringstream ostr; m->print(ostr); VLOG(MKLDNN_ALL) << std::endl << ostr.str(); } void MKLDNNTester::printVector(const VectorPtr& v) { if (!log_) { return; } std::ostringstream ostr; v->print(ostr, v->getSize()); VLOG(MKLDNN_ALL) << std::endl << ostr.str(); } double MKLDNNTester::getDelta(const real* d1, const real* d2, size_t len, const float failRate, const float thres) { double delta = 0, sum = 0; int failCnt = 0; const double eps = 1e-5; double maxOut = 0; for (size_t i = 0; i < len; ++i) { double ref = fabs(d2[i]); double diff = fabs(d1[i] - d2[i]); delta += diff; sum += ref; if (ref > eps && fabs(d1[i]) > eps && diff / ref > thres) { maxOut = std::max(maxOut, diff / ref); failCnt++; } } EXPECT_TRUE(std::isnormal(sum)); EXPECT_FALSE(std::isinf(sum)); EXPECT_FALSE(std::isnan(delta)); VLOG(MKLDNN_ALL) << "reference avg data: " << sum / len << ", delta: " << delta / sum << ", failCnt:" << failCnt; return (failCnt / (float)len) > failRate ? maxOut : delta / sum; } double MKLDNNTester::compareMatrix(const MatrixPtr& m1, const MatrixPtr& m2) { CHECK_EQ(m1->getElementCnt(), m2->getElementCnt()); return getDelta(m1->getData(), m2->getData(), m1->getElementCnt()); } double MKLDNNTester::compareVector(const VectorPtr& v1, const VectorPtr& v2) { CHECK_EQ(v1->getSize(), v2->getSize()); return getDelta(v1->getData(), v2->getData(), v1->getSize()); } void MKLDNNTester::runOnce() { // test forward randomBotDatas(); dnnLayer_->forward(PASS_TRAIN); refLayer_->forward(PASS_TRAIN); checkForward(); // test backward // simple updater UpdateCallback updateCallback = [](Parameter* para) { auto& grad = para->getBuf(PARAMETER_GRADIENT); auto& value = para->getBuf(PARAMETER_VALUE); real lr = 1e-2; value->add(*grad, lr); grad->zeroMem(); }; randomTopDiffs(); dnnLayer_->backward(updateCallback); refLayer_->backward(updateCallback); checkBackwardData(); checkBackwardWgts(); // clear buffers // ref code will addto the diff, dnn code will writeto it // and clearTopDatas(REF) should be coverd by ref layers clearBotDiffs(REF); clearWgtDiffs(REF); // it is necessary to clear bottom diffs when only activation is dnn type if (configs_[DNN].layerConfig.active_type().compare(0, 7, "mkldnn_") == 0) { clearBotDiffs(DNN); } } void MKLDNNTester::run(const TestConfig& dnn, const TestConfig& ref, size_t batchSize, size_t inputImgH, size_t inputImgW, bool printDetails, size_t iter, float epsilon) { CHECK(dnn.layerConfig.type().compare(0, 7, "mkldnn_") == 0 || dnn.layerConfig.active_type().compare(0, 7, "mkldnn_") == 0) << "should be MKLDNN layer or MKLDNN activation"; if (dnn.layerConfig.type() == ref.layerConfig.type()) { VLOG(MKLDNN_TESTS) << "Test MKLDNN functionality: " << dnn.layerConfig.active_type() << " vs " << ref.layerConfig.active_type(); } else { VLOG(MKLDNN_TESTS) << "Test MKLDNN functionality: " << dnn.layerConfig.type() << " vs " << ref.layerConfig.type(); } ih_ = inputImgH; iw_ = inputImgW; log_ = printDetails; iter_ = iter; eps_ = epsilon; // Firstly test mkldnn init from PARAM_FORMAT_ORIGINAL weight reset(dnn, ref, batchSize); randomWgtDatas(); clearWgtDiffs(); clearBotDiffs(); for (size_t i = 0; i < iter_; ++i) { VLOG(MKLDNN_TESTS) << "Check Iteration " << i; runOnce(); } if (parameters_[DNN].empty()) { // has no paramters return; } // After run some iterations, the mkldnn weight has been stored in dnnLayer // and we can also get the mkldnn weight parameter header format. // Weight parameter should always be index 0 (and bias index 1). // TODO(TJ): should also consider mean and var format when batchnorm ready int dnnWgtFmt = parameters_[DNN][0]->getHeaderFormat(); int refWgtFmt = parameters_[REF][0]->getHeaderFormat(); if (dnnWgtFmt == refWgtFmt) { // weight format are equal, so no need check more return; } // then save the weights and restart again vector dnnWgts, refWgts; CHECK_EQ(parameters_[DNN].size(), parameters_[REF].size()); saveWgt(parameters_[DNN], dnnWgts); saveWgt(parameters_[REF], refWgts); // restart again with dnn weight format reset(dnn, ref, batchSize); // TODO(TJ): should also considerate mean and var format when batchnorm ready parameters_[DNN][0]->setHeaderFormat(dnnWgtFmt); // restore wgt restoreWgt(dnnWgts, parameters_[DNN]); restoreWgt(refWgts, parameters_[REF]); clearWgtDiffs(); clearBotDiffs(); for (size_t i = 0; i < iter_; ++i) { VLOG(MKLDNN_TESTS) << "Check Iteration " << i; runOnce(); } } void MKLDNNTester::initArgument(DataIn& data, const std::string& configPath, const size_t iter) { TrainerConfigHelper config(configPath); size_t batchSize = config.getOptConfig().batch_size(); data.inArgs.resize(iter); data.outGrads.resize(iter); data.paraValues.clear(); for (const auto& layer_name : config.getModelConfig().input_layer_names()) { auto layer_config = std::find_if(config.getModelConfig().layers().begin(), config.getModelConfig().layers().end(), [=](const LayerConfig& layer_config) { return layer_config.name() == layer_name; }); CHECK(layer_config != config.getModelConfig().layers().end()); size_t layerSize = layer_config->size(); for (size_t i = 0; i < iter; ++i) { Argument arg; arg.value = Matrix::create(batchSize, layerSize, false, false); arg.grad = Matrix::create(batchSize, layerSize, false, false); arg.value->randomizeUniform(); arg.value->add(-0.5); arg.value->sigmoid(*arg.value); arg.grad->zeroMem(); arg.ids = VectorT::create(batchSize, false); arg.ids->rand(layerSize); generateSequenceStartPositions(batchSize, arg.sequenceStartPositions); data.inArgs[i].push_back(arg); } } for (const auto& layer_name : config.getModelConfig().output_layer_names()) { auto layer_config = std::find_if(config.getModelConfig().layers().begin(), config.getModelConfig().layers().end(), [=](const LayerConfig& layer_config) { return layer_config.name() == layer_name; }); CHECK(layer_config != config.getModelConfig().layers().end()); size_t layerSize = layer_config->size(); for (size_t i = 0; i < iter; ++i) { MatrixPtr grad = Matrix::create(batchSize, layerSize, false, false); grad->randomizeUniform(); data.outGrads[i].push_back(grad); } } for (const auto& para_config : config.getModelConfig().parameters()) { VectorPtr value = Vector::create(para_config.size(), false); value->randnorm(0, 2); data.paraValues.push_back(value); } } void MKLDNNTester::getOutResult(const std::string& configPath, DataIn& in, DataOut& out, bool use_mkldnn, size_t iter) { FLAGS_use_gpu = false; FLAGS_use_mkldnn = use_mkldnn; *ThreadLocalRand::getSeed() = 1; srand(1); Trainer trainer; auto config = std::make_shared(configPath); trainer.init(config, false); auto gradientMachine = trainer.getGradientMachine(); std::vector parameters = gradientMachine->getParameters(); for (size_t i = 0; i < in.paraValues.size(); i++) { parameters[i]->getBuf(PARAMETER_VALUE)->copyFrom(*in.paraValues[i]); } UpdateCallback simpleUpdate = [](Parameter* para) { auto& grad = para->getBuf(PARAMETER_GRADIENT); auto& value = para->getBuf(PARAMETER_VALUE); real lr = 1e-2; value->add(*grad, lr); grad->zeroMem(); }; vector outArgs; gradientMachine->start(); out.outValues.clear(); out.paraValues.clear(); for (size_t i = 0; i < iter; ++i) { VLOG(MKLDNN_TESTS) << "runing iteration " << i; gradientMachine->forward(in.inArgs[i], &outArgs, PASS_TRAIN); // save forward result for (size_t k = 0; k < outArgs.size(); k++) { MatrixPtr value = Matrix::create(outArgs[k].value->getHeight(), outArgs[k].value->getWidth(), false, false); value->copyFrom(*outArgs[k].value); out.outValues.push_back(value); } // random backward input for (size_t k = 0; k < outArgs.size(); k++) { outArgs[k].grad->copyFrom(*in.outGrads[i][k]); } gradientMachine->backward(simpleUpdate); } gradientMachine->finish(); // save param value for (size_t i = 0; i < in.paraValues.size(); i++) { VectorPtr val = Vector::create( parameters[i]->getBuf(PARAMETER_VALUE)->getSize(), false); val->copyFrom(*parameters[i]->getBuf(PARAMETER_VALUE)); out.paraValues.push_back(val); } } void MKLDNNTester::compareResult(DataOut& ref, DataOut& dnn, float eps) { CHECK_EQ(ref.outValues.size(), dnn.outValues.size()); CHECK_EQ(ref.paraValues.size(), dnn.paraValues.size()); VLOG(MKLDNN_TESTS) << "compare value size: " << ref.outValues.size(); for (size_t i = 0; i < ref.outValues.size(); i++) { EXPECT_LE(fabs(compareMatrix(ref.outValues[i], dnn.outValues[i])), eps); } VLOG(MKLDNN_TESTS) << "compare param size: " << ref.outValues.size(); for (size_t i = 0; i < ref.paraValues.size(); i++) { EXPECT_LE(fabs(compareVector(ref.paraValues[i], dnn.paraValues[i])), eps); } } void MKLDNNTester::runBranchesTest(const std::string& configPath, size_t iter, float eps) { DataIn in; initArgument(in, configPath, iter); DataOut outCpu, outDnn; VLOG(MKLDNN_TESTS) << "runing cpu network"; getOutResult(configPath, in, outCpu, false, iter); VLOG(MKLDNN_TESTS) << "runing mkldnn network"; getOutResult(configPath, in, outDnn, true, iter); compareResult(outCpu, outDnn, eps); } } // namespace paddle