// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include #include "cinn/hlir/framework/graph_compiler.h" #include "cinn/hlir/framework/scope.h" #include "cinn/runtime/cinn_runtime.h" #include "paddle/fluid/framework/ir/graph.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/operator.h" #include "paddle/fluid/framework/paddle2cinn/cinn_compiler.h" namespace paddle { namespace operators { static constexpr char kX[] = "X"; static constexpr char kOutputs[] = "Out"; static constexpr char kCompilationKey[] = "compilation_key"; using LoDTensor = framework::LoDTensor; using CinnTensor = ::cinn::hlir::framework::Tensor; using CinnScope = ::cinn::hlir::framework::Scope; using CinnCompiler = framework::paddle2cinn::CinnCompiler; using CinnCompiledObject = framework::paddle2cinn::CinnCompiledObject; namespace details { // Tranform Paddle place to CINN target const ::cinn::common::Target& PlaceToCinnTarget(const platform::Place& place); // Print detailed compilation result of graph for debug void DebugCinnCompiledResult(const CinnCompiledObject& result); // Transform names of Paddle variables to CINN ones std::vector MapPaddleVariablesToCinn( const std::vector& paddle_names, const std::unordered_map& paddle2cinn_varmap); // Get CinnTensor with variable name from CinnScope std::vector GetCinnTensorsFromCompiledScope( const std::vector& cinn_names, const CinnScope& cinn_scope); // Check whether tensors from Paddle and CINN respectively // of the same variable are equivalent in type and dimension void CheckTensorEquivalent(const std::string& paddle_name, const LoDTensor* paddle_tensor, const CinnTensor& cinn_tensor); // Allocate buffer to a Paddle tensor with assginment information from CINN void TensorMutableDataWithCinnInfo(const platform::Place& place, const CinnTensor& cinn_tensor, LoDTensor* paddle_tensor); // Extract temporary variable names from CinnScope by excluding // input and output variables std::vector SeperateTempVar( const CinnScope& cinn_scope, const std::vector& input_cinn_names, const std::vector& output_cinn_names); // Share the buffer of a Paddle tensor to CINN by packing memory address // in a cinn_buffer_t object std::unique_ptr ShareTensorWithCinnBuffer(LoDTensor* tensor); // Check all execution arguments are carried void CheckArgumentsNotMissed( const CinnScope& cinn_scope, const std::map& name2argument); } // namespace details template class CinnLaunchOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { const auto& scope = ctx.scope(); const auto& place = ctx.GetPlace(); // Step 1. Find graph object and prepare input PADDLE_ENFORCE_EQ(ctx.HasAttr(kCompilationKey), true, platform::errors::NotFound( "No Attribute(%s) found for CinnLaunchOp operator.", kCompilationKey)); const auto& compilation_key = ctx.template Attr(kCompilationKey); VLOG(4) << "CinnLaunchOp attribute(" << kCompilationKey << ") " << "value:\n" << CinnCompiler::GetInstance()->ReadableKey(compilation_key); auto input_variable_names = ctx.InputNames(kX); const auto& input_tensors = ctx.MultiInput(kX); std::map inputs_name2tensor; std::transform(input_variable_names.begin(), input_variable_names.end(), input_tensors.begin(), std::inserter(inputs_name2tensor, inputs_name2tensor.end()), [](const std::string& name, const LoDTensor* tensor) { return std::make_pair(name, tensor); }); // Step 2. Get compilation result of the graph auto target = details::PlaceToCinnTarget(place); const auto& cinn_compiled_object = CinnCompiler::GetInstance()->Compile( compilation_key, inputs_name2tensor, target); details::DebugCinnCompiledResult(cinn_compiled_object); const auto& cinn_runtime_program = cinn_compiled_object.runtime_program; const auto& cinn_scope = *(cinn_compiled_object.scope); const auto& paddle2cinn_varmap = cinn_compiled_object.paddle2cinn_varmap; // Step 3. Initialize all variables needed for cinn compiled runtime // program execution, and share buffers of their tensors into // cinn buffers through execution arguments passed. VLOG(4) << "CinnLaunchOp initialize variables and prepare arguments"; std::map name2argument; // because a cinn_pod_value_t does not own the cinn_buffer_t object, // an extra stroage is necessary to keep the object and it can // not be released until runtime program finish execution. std::vector> hold_buffers; // 3.1 Prepare input variables: because tensors of input variables have // been initialized before graph compiled, just check the // equiality between tensors of paddle and cinn. auto input_cinn_names = details::MapPaddleVariablesToCinn( input_variable_names, paddle2cinn_varmap); auto input_cinn_tensors = details::GetCinnTensorsFromCompiledScope(input_cinn_names, cinn_scope); for (auto i = 0; i < input_variable_names.size(); ++i) { const auto& var_name = input_variable_names.at(i); const auto& cinn_name = input_cinn_names.at(i); auto* tensor = scope.GetVar(var_name)->GetMutable(); details::CheckTensorEquivalent(var_name, tensor, input_cinn_tensors.at(i)); VLOG(4) << "Prepare input argument-" << i << ":" << "name(" << var_name << "->" << cinn_name << "), " << "tensor(type:" << tensor->type() << "," << "dims:" << tensor->dims() << ")."; auto buffer = details::ShareTensorWithCinnBuffer(tensor); name2argument.emplace(input_cinn_names.at(i), buffer.get()); hold_buffers.emplace_back(std::move(buffer)); } // 3.2 Prepare output variables: all output variables should // be initialized and allocated buffer in advance before // the runtime program start execution, the compilation result // includes details of their buffer assginment which used by // Paddle tensor allocation. For those variables allocated yet, // like persistable parameters, just check the equiality between // Paddle allocation and CINN buffer assginment. auto output_variable_names = ctx.OutputNames(kOutputs); auto output_cinn_names = details::MapPaddleVariablesToCinn( output_variable_names, paddle2cinn_varmap); auto output_cinn_tensors = details::GetCinnTensorsFromCompiledScope(output_cinn_names, cinn_scope); for (auto i = 0; i < output_variable_names.size(); ++i) { const auto& var_name = output_variable_names.at(i); const auto& cinn_name = output_cinn_names.at(i); auto* tensor = scope.GetVar(var_name)->GetMutable(); if (tensor->IsInitialized()) { details::CheckTensorEquivalent(var_name, tensor, output_cinn_tensors.at(i)); } else { details::TensorMutableDataWithCinnInfo(place, output_cinn_tensors.at(i), tensor); } VLOG(4) << "Prepare outnput argument-" << i << ":" << "name(" << var_name << "->" << cinn_name << "), " << "tensor(type:" << tensor->type() << "," << "dims:" << tensor->dims() << ")."; auto buffer = details::ShareTensorWithCinnBuffer(tensor); name2argument.emplace(output_cinn_names.at(i), buffer.get()); hold_buffers.emplace_back(std::move(buffer)); } // 3.3 Prepare temporary variables: Create a temporary scope // to keep temporary variables needed by compiled runtime program // in addition, they directly use the names from CinnScope. auto temp_variable_names = details::SeperateTempVar( cinn_scope, input_cinn_names, output_cinn_names); auto temp_scope = scope.NewTmpScope(); if (!temp_variable_names.empty()) { auto temp_cinn_tensors = details::GetCinnTensorsFromCompiledScope( temp_variable_names, cinn_scope); for (auto i = 0; i < temp_variable_names.size(); ++i) { const auto& var_name = temp_variable_names.at(i); auto* tensor = temp_scope->Var(var_name)->GetMutable(); details::TensorMutableDataWithCinnInfo(place, temp_cinn_tensors.at(i), tensor); VLOG(4) << "Prepare temporary argument-" << i << ":" << "name(" << var_name << "->" << var_name << "), " << "tensor(type:" << tensor->type() << "," << "dims:" << tensor->dims() << ")."; auto buffer = details::ShareTensorWithCinnBuffer(tensor); name2argument.emplace(var_name, buffer.get()); hold_buffers.emplace_back(std::move(buffer)); } } // Step 4. Launch CINN to execute the compiled runtime program details::CheckArgumentsNotMissed(cinn_scope, name2argument); cinn_runtime_program->Execute(&name2argument); VLOG(4) << "CinnLaunchOp launch execution done."; } }; } // namespace operators } // namespace paddle