/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/framework/executor.h" #include #include #include "gflags/gflags.h" #include "gtest/gtest.h" #include "paddle/framework/attribute.h" #include "paddle/framework/backward.h" #include "paddle/framework/block_desc.h" #include "paddle/framework/op_desc.h" #include "paddle/framework/op_registry.h" #include "paddle/framework/operator.h" USE_OP(elementwise_add); USE_OP(gaussian_random); USE_OP(feed); USE_OP(fetch); USE_OP(mul); USE_OP(sum); USE_OP(squared_l2_distance); USE_OP(fill_constant); USE_OP(sgd); using namespace paddle::platform; using namespace paddle::framework; void AddOp(const std::string& type, const VariableNameMap& inputs, const VariableNameMap& outputs, AttributeMap attrs, paddle::framework::BlockDescBind* block) { // insert output for (auto kv : outputs) { for (auto v : kv.second) { auto var = block->Var(v); var->SetType(VarDesc::LOD_TENSOR); var->SetDataType(paddle::framework::DataType::FP32); } } // insert op auto op = block->AppendOp(); op->SetType(type); for (auto& kv : inputs) { op->SetInput(kv.first, kv.second); } for (auto& kv : outputs) { op->SetOutput(kv.first, kv.second); } op->SetAttrMap(attrs); op->CheckAttrs(); } // Tensors in feed value variable will only be in CPUPlace // So we can memcpy the data from vector to feed_value template void SetFeedVariable(const std::vector>& inputs, const std::vector>& dims) { Variable* g_feed_value = GetGlobalScope().FindVar("feed_value"); auto& feed_inputs = *(g_feed_value->GetMutable>()); size_t size = inputs.size(); feed_inputs.resize(size); for (size_t i = 0; i < size; i++) { T* dst = feed_inputs[i].mutable_data(make_ddim(dims[i]), CPUPlace()); memcpy(dst, inputs[i].data(), inputs[i].size() * sizeof(T)); } } // Tensors in fetch value variable will only be in CPUPlace // So we can memcpy the data from fetch_value to vector template std::vector> GetFetchVariable() { Variable* g_fetch_value = GetGlobalScope().FindVar("fetch_value"); auto& fetch_outputs = *(g_fetch_value->GetMutable>()); size_t size = fetch_outputs.size(); std::vector> result; result.reserve(size); for (size_t i = 0; i < size; i++) { std::vector tmp; tmp.resize(fetch_outputs[i].numel()); memcpy(tmp.data(), fetch_outputs[i].data(), fetch_outputs[i].numel() * sizeof(T)); result.push_back(tmp); } return result; } class ExecutorTesterRandom : public ::testing::Test { public: virtual void SetUp() override { int input_dim = 3, batch_size = 2, embed_dim = 5; auto temp_init_root_block = init_pdesc_.add_blocks(); temp_init_root_block->set_idx(0); temp_init_root_block->set_parent_idx(-1); paddle::framework::ProgramDescBind& init_program = paddle::framework::ProgramDescBind::Instance(&init_pdesc_); paddle::framework::BlockDescBind* init_root_block = init_program.Block(0); AddOp("gaussian_random", {}, {{"Out", {"w1"}}}, {{"dims", std::vector{input_dim, embed_dim}}}, init_root_block); AddOp("gaussian_random", {}, {{"Out", {"w2"}}}, {{"dims", std::vector{embed_dim, input_dim}}}, init_root_block); AddOp("fetch", {{"Input", {"w1"}}}, {}, {{"col", 0}}, init_root_block); AddOp("fetch", {{"Input", {"w2"}}}, {}, {{"col", 1}}, init_root_block); // flush init_program.Proto(); // run block auto temp_root_block = pdesc_.add_blocks(); temp_root_block->set_idx(0); temp_root_block->set_parent_idx(-1); paddle::framework::ProgramDescBind& program = paddle::framework::ProgramDescBind::Instance(&pdesc_); paddle::framework::BlockDescBind* root_block = program.Block(0); // feed data inputs_.push_back({1.0, 1.0, 1.0, 1.0, 1.0, 1.0}); dims_.push_back({batch_size, input_dim}); AddOp("feed", {}, {{"Out", {"a"}}}, {{"dims", std::vector{batch_size, input_dim}}, {"col", 0}}, root_block); // forward AddOp("mul", {{"X", {"a"}}, {"Y", {"w1"}}}, {{"Out", {"b"}}}, {}, root_block); AddOp("mul", {{"X", {"b"}}, {"Y", {"w2"}}}, {{"Out", {"a_out"}}}, {}, root_block); AddOp("squared_l2_distance", {{"X", {"a"}}, {"Y", {"a_out"}}}, {{"Out", {"l2_distance"}}, {"sub_result", {"l2_distance_sub"}}}, {}, root_block); // backward AddOp("fill_constant", {}, {{"Out", {"l2_distance@GRAD"}}}, {{"shape", std::vector{batch_size, 1}}, {"value", float(1.0)}}, root_block); AppendBackward(program, {}); // update AddOp("fill_constant", {}, {{"Out", {"learning_rate"}}}, {{"shape", std::vector{1}}, {"value", float(0.001)}}, root_block); AddOp("sgd", {{"Param", {"w1"}}, {"LearningRate", {"learning_rate"}}, {"Grad", {"w1@GRAD"}}}, {{"ParamOut", {"w1"}}}, {}, root_block); AddOp("sgd", {{"Param", {"w2"}}, {"LearningRate", {"learning_rate"}}, {"Grad", {"w2@GRAD"}}}, {{"ParamOut", {"w2"}}}, {}, root_block); AddOp("fetch", {{"Input", {"w1"}}}, {}, {{"col", 0}}, root_block); AddOp("fetch", {{"Input", {"w2"}}}, {}, {{"col", 1}}, root_block); AddOp("fetch", {{"Input", {"l2_distance"}}}, {}, {{"col", 0}}, root_block); // flush program.Proto(); } protected: ProgramDesc init_pdesc_; ProgramDesc pdesc_; std::vector> inputs_; std::vector> dims_; }; class ExecutorTesterFeedAndFetch : public ::testing::Test { public: virtual void SetUp() override { auto temp_root_block = pdesc_.add_blocks(); temp_root_block->set_idx(0); temp_root_block->set_parent_idx(-1); // wrap to BlockDescBind paddle::framework::ProgramDescBind& program = paddle::framework::ProgramDescBind::Instance(&pdesc_); paddle::framework::BlockDescBind* root_block = program.Block(0); std::vector dim{6}; AddOp("feed", {}, {{"Out", {"a"}}}, {{"dims", dim}, {"col", 0}}, root_block); AddOp("feed", {}, {{"Out", {"b"}}}, {{"dims", dim}, {"col", 1}}, root_block); AddOp("fetch", {{"Input", {"a"}}}, {}, {{"col", 0}}, root_block); AddOp("fetch", {{"Input", {"b"}}}, {}, {{"col", 1}}, root_block); // flush program.Proto(); std::vector vec1 = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0}; std::vector vec2 = {4.0, 5.0, 6.0, 7.0, 8.0, 9.0}; inputs_.push_back(vec1); inputs_.push_back(vec2); dims_.push_back({static_cast(vec1.size())}); dims_.push_back({static_cast(vec2.size())}); } protected: ProgramDesc pdesc_; std::vector> inputs_; std::vector> dims_; }; #ifndef PADDLE_WITH_CUDA TEST_F(ExecutorTesterRandom, CPU) { std::vector places; CPUPlace cpu_place; places.push_back(cpu_place); // We have a global Scope and BuddyAllocator, and we must ensure // global BuddyAllocator is initialized before global Scope. Thus, // global Scope will deconstruct before BuddyAllocator. Otherwise, // "pointer being freed was not allocated" error will appear. paddle::memory::Used(cpu_place); std::unique_ptr executor(new Executor(places)); executor->Run(init_pdesc_, &GetGlobalScope(), 0); SetFeedVariable(inputs_, dims_); executor->Run(pdesc_, &GetGlobalScope(), 0); std::vector> result = GetFetchVariable(); } TEST_F(ExecutorTesterFeedAndFetch, CPU) { std::vector places; CPUPlace cpu_place; places.push_back(cpu_place); // We have a global Scope and BuddyAllocator, and we must ensure // global BuddyAllocator is initialized before global Scope. Thus, // global Scope will deconstruct before BuddyAllocator. Otherwise, // "pointer being freed was not allocated" error will appear. paddle::memory::Used(cpu_place); std::unique_ptr executor(new Executor(places)); for (int batch_id = 0; batch_id < 3; batch_id++) { SetFeedVariable(inputs_, dims_); executor->Run(pdesc_, &GetGlobalScope(), 0); std::vector> result = GetFetchVariable(); PADDLE_ENFORCE_EQ(result.size(), inputs_.size()); for (size_t i = 0; i < result.size(); ++i) { PADDLE_ENFORCE_EQ(result[i].size(), inputs_[i].size()); for (size_t j = 0; j < result[i].size(); ++j) { PADDLE_ENFORCE_EQ(result[i][j], inputs_[i][j]); } } } } #else TEST_F(ExecutorTesterRandom, GPU) { std::vector places; GPUPlace gpu_place(0); places.push_back(gpu_place); // We have a global Scope and BuddyAllocator, and we must ensure // global BuddyAllocator is initialized before global Scope. Thus, // global Scope will deconstruct before BuddyAllocator. Otherwise, // "pointer being freed was not allocated" error will appear. // If paddle is compiled with GPU, both CPU and GPU BuddyAllocator // need to be used at first. paddle::memory::Used(CPUPlace()); paddle::memory::Used(gpu_place); std::unique_ptr executor(new Executor(places)); executor->Run(init_pdesc_, &GetGlobalScope(), 0); for (int batch_id = 0; batch_id < 3; batch_id++) { SetFeedVariable(inputs_, dims_); executor->Run(pdesc_, &GetGlobalScope(), 0); } } TEST_F(ExecutorTesterFeedAndFetch, GPU) { std::vector places; GPUPlace gpu_place(0); places.push_back(gpu_place); // We have a global Scope and BuddyAllocator, and we must ensure // global BuddyAllocator is initialized before global Scope. Thus, // global Scope will deconstruct before BuddyAllocator. Otherwise, // "pointer being freed was not allocated" error will appear. // If paddle is compiled with GPU, both CPU and GPU BuddyAllocator // need to be used at first. paddle::memory::Used(CPUPlace()); paddle::memory::Used(gpu_place); std::unique_ptr executor(new Executor(places)); for (int batch_id = 0; batch_id < 3; batch_id++) { SetFeedVariable(inputs_, dims_); executor->Run(pdesc_, &GetGlobalScope(), 0); std::vector> result = GetFetchVariable(); PADDLE_ENFORCE_EQ(result.size(), inputs_.size()); for (size_t i = 0; i < result.size(); ++i) { PADDLE_ENFORCE_EQ(result[i].size(), inputs_[i].size()); for (size_t j = 0; j < result[i].size(); ++j) { PADDLE_ENFORCE_EQ(result[i][j], inputs_[i][j]); } } } } DECLARE_double(fraction_of_gpu_memory_to_use); int main(int argc, char** argv) { testing::InitGoogleTest(&argc, argv); // Use less GPU memory for unittest. FLAGS_fraction_of_gpu_memory_to_use = 0.25; return RUN_ALL_TESTS(); } #endif