// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/imperative/prepared_operator.h" #include namespace paddle { namespace imperative { const framework::Tensor* GetTensorFromVar(const framework::Variable& var) { if (var.IsType()) { return &(var.Get()); } else if (var.IsType()) { return &(var.Get().value()); } else { return nullptr; } } template static void PrepareDataImpl( const platform::Place& place, const NameVarMap& ins, const framework::OperatorWithKernel& op, const framework::OpKernelType& expected_kernel_key) { for (const auto& name_pair : ins) { for (const auto& var_base : name_pair.second) { const auto* tensor = GetTensorFromVar(var_base->Var()); if (tensor && tensor->IsInitialized()) { auto tmp_place = tensor->place(); // TODO(jiabin): Support transform data layout when we Verify it on more // tests if (!(tmp_place == place)) { auto kernel_type_for_var = op.GetKernelTypeForVar( name_pair.first, *tensor, expected_kernel_key); if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) { continue; } else { VLOG(3) << "Transform Variable " << var_base->Name() << " from " << kernel_type_for_var << " to " << expected_kernel_key; framework::Tensor out; TransformData(expected_kernel_key, kernel_type_for_var, *tensor, &out); SetTensorToVariable(var_base->Var(), out, var_base->MutableVar()); } } } } } } void PreparedOp::PrepareData( const platform::Place& place, const NameVarMap& ins, const framework::OperatorWithKernel& op, const framework::OpKernelType& expected_kernel_key) { PrepareDataImpl(place, ins, op, expected_kernel_key); } void PreparedOp::PrepareData( const platform::Place& place, const NameVarMap& ins, const framework::OperatorWithKernel& op, const framework::OpKernelType& expected_kernel_key) { PrepareDataImpl(place, ins, op, expected_kernel_key); } PreparedOp::PreparedOp(const framework::OperatorBase& op, const framework::RuntimeContext& ctx, const framework::OperatorWithKernel::OpKernelFunc& func, platform::DeviceContext* dev_ctx, std::vector* kernel_configs) : op_(op), ctx_(ctx), func_(func), dev_ctx_(dev_ctx), kernel_configs_(kernel_configs) {} template PreparedOp PrepareOpImpl(const NameVarMap& ins, const NameVarMap& outs, const framework::OperatorWithKernel& op, platform::Place place, const framework::AttributeMap& attrs) { platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance(); auto* dev_ctx = pool.Get(place); // check if op[type] has kernel registered. auto& all_op_kernels = op.AllOpKernels(); auto kernels_iter = all_op_kernels.find(op.Type()); if (kernels_iter == all_op_kernels.end()) { PADDLE_THROW( "There are no kernels which are registered in the %s operator.", op.Type()); } auto& kernels = kernels_iter->second; framework::RuntimeContext ctx({}, {}); auto expected_kernel_key = op.GetExpectedKernelType(DygraphExecutionContext( op, framework::Scope(), *dev_ctx, ctx, nullptr, ins, outs, attrs)); VLOG(3) << "expected_kernel_key:" << expected_kernel_key; auto kernel_iter = kernels.find(expected_kernel_key); // TODO(jiabin): Add operator.cc's line 1000 part back when we need that case if (kernel_iter == kernels.end()) { PADDLE_THROW("op %s does not have kernel for %s", op.Type(), KernelTypeToString(expected_kernel_key)); } std::vector* kernel_configs = op.GetKernelConfig(expected_kernel_key); if (!(expected_kernel_key.place_ == place)) { dev_ctx = pool.Get(expected_kernel_key.place_); place = dev_ctx->GetPlace(); } PrepareDataImpl(place, ins, op, expected_kernel_key); return PreparedOp(op, ctx, kernel_iter->second, dev_ctx, kernel_configs); } PreparedOp PreparedOp::Prepare(const NameVarMap& ins, const NameVarMap& outs, const framework::OperatorWithKernel& op, const platform::Place& place, const framework::AttributeMap& attrs) { return PrepareOpImpl(ins, outs, op, place, attrs); } PreparedOp PreparedOp::Prepare(const NameVarMap& ins, const NameVarMap& outs, const framework::OperatorWithKernel& op, const platform::Place& place, const framework::AttributeMap& attrs) { return PrepareOpImpl(ins, outs, op, place, attrs); } template static void PreparedOpRunImpl( const framework::OperatorBase& op, const framework::RuntimeContext& ctx, const framework::OperatorWithKernel::OpKernelFunc& func, platform::DeviceContext* dev_ctx, std::vector* kernel_configs, const NameVarMap& ins, const NameVarMap& outs, const framework::AttributeMap& attrs) { // TODO(zjl): remove scope in dygraph framework::Scope scope; DygraphInferShapeContext infer_shape_ctx(&ins, &outs, &attrs); static_cast(op).InferShape( &infer_shape_ctx); func(DygraphExecutionContext(op, scope, *dev_ctx, ctx, kernel_configs, ins, outs, attrs)); } void PreparedOp::Run(const NameVarMap& ins, const NameVarMap& outs, const framework::AttributeMap& attrs) { PreparedOpRunImpl(op_, ctx_, func_, dev_ctx_, kernel_configs_, ins, outs, attrs); } void PreparedOp::Run(const NameVarMap& ins, const NameVarMap& outs, const framework::AttributeMap& attrs) { PreparedOpRunImpl(op_, ctx_, func_, dev_ctx_, kernel_configs_, ins, outs, attrs); } } // namespace imperative } // namespace paddle