/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #ifdef PADDLE_WITH_XPU #include #include #include "paddle/fluid/framework/tensor.h" #include "paddle/fluid/platform/place.h" inline std::string get_xpu_error_message(int error_type) { static std::unordered_map xpu_error_map = { {baidu::xpu::api::INVALID_PARAM, "Parameter is invalid."}, {baidu::xpu::api::RUNTIME_ERROR, "Please check whether Baidu Kunlun Card " "is properly installed."}, {baidu::xpu::api::NO_ENOUGH_WORKSPACE, "There is not enough memory in Baidu" " Kunlun Card."}}; if (xpu_error_map.find(error_type) == xpu_error_map.end()) { return "Unknown error type!"; } return xpu_error_map[error_type]; } #define XPU_MALLOC(addr, num_bytes) \ PADDLE_ENFORCE_EQ(xpu_malloc(reinterpret_cast(addr), num_bytes), \ XPU_SUCCESS, \ platform::errors::ResourceExhausted( \ "\n\nOut of memory error on XPU, Cannot" \ "allocate %s memory on XPU. \n\nPlease " \ "check whether there is any other process " \ "using XPU.\n", \ string::HumanReadableSize(num_bytes))) #define DEFINE_XPU_GRAD_KERNEL(kernel_type, kernel_name, use_x_y_data) \ template \ class Elementwise##kernel_type##GradXPUKernel \ : public ElemwiseGradKernel { \ public: \ void Compute(const framework::ExecutionContext& ctx) const override { \ ElemwiseGradKernel::Compute(ctx); \ using Tensor = framework::Tensor; \ auto* dout = ctx.Input(framework::GradVarName("Out")); \ auto* dx = ctx.Output(framework::GradVarName("X")); \ auto* dy = ctx.Output(framework::GradVarName("Y")); \ auto dx_dims = dout->dims(); \ auto dy_dims_untrimed = dout->dims(); \ T* dx_data = NULL; \ T* dy_data = NULL; \ const T* y_data = nullptr; \ const T* x_data = nullptr; \ T* y_broadcast = nullptr; \ if (use_x_y_data) { \ auto* x = ctx.Input("X"); \ auto* y = ctx.Input("Y"); \ y_data = y->data(); \ x_data = x->data(); \ } else { \ x_data = dout->data(); \ y_data = dout->data(); \ } \ int axis = ctx.Attr("axis"); \ PADDLE_ENFORCE_GE( \ dx_dims.size(), dy_dims_untrimed.size(), \ platform::errors::InvalidArgument( \ "Rank of first input must >= rank of second input.")); \ if (dx != nullptr) { \ dx->mutable_data(ctx.GetPlace()); \ dx_dims = dx->dims(); \ dx_data = dx->data(); \ } \ if (dy != nullptr) { \ dy->mutable_data(ctx.GetPlace()); \ dy_dims_untrimed = dy->dims(); \ dy_data = dy->data(); \ } \ int pre, n, post, is_run_common_broadcast; \ if (dx_dims == dy_dims_untrimed) { \ pre = post = 1; \ n = dout->numel(); \ } else { \ axis = (axis == -1 ? dx_dims.size() - dy_dims_untrimed.size() : axis); \ PADDLE_ENFORCE_EQ(axis >= 0 && axis < dx_dims.size(), true, \ platform::errors::InvalidArgument( \ "Axis should be in range [0, dx_dims)")); \ auto dy_dims = trim_trailing_singular_dims(dy_dims_untrimed); \ axis = (dy_dims.size() == 0) ? dx_dims.size() : axis; \ get_mid_dims(dx_dims, dy_dims, axis, &pre, &n, &post, \ &is_run_common_broadcast); \ } \ int len = pre * n * post; \ auto& dev_ctx = \ ctx.template device_context(); \ if (dx == nullptr) { \ XPU_MALLOC(&dx_data, len * sizeof(float)); \ } \ if (dy == nullptr) { \ XPU_MALLOC(&dy_data, len * sizeof(float)); \ } else { \ if (len != n) { \ XPU_MALLOC(&dy_data, len * sizeof(float)); \ } \ } \ if (use_x_y_data) { \ if (len != n) { \ XPU_MALLOC(&y_broadcast, len * sizeof(float)); \ int res = \ xpu::broadcast_ew(dev_ctx.x_context(), y_data, y_broadcast, pre, \ n, post, xpu::ElementwiseOp::ASSIGN); \ PADDLE_ENFORCE_EQ( \ res, xpu::Error_t::SUCCESS, \ platform::errors::External("XPU kernel error occur! %s", \ get_xpu_error_message(res))); \ y_data = y_broadcast; \ } \ } \ int res = xpu::elementwise_##kernel_name##_grad( \ dev_ctx.x_context(), x_data, y_data, dout->data() /*out*/, \ dout->data(), dx_data, dy_data, len); \ PADDLE_ENFORCE_EQ( \ res, xpu::Error_t::SUCCESS, \ platform::errors::External("XPU kernel error occur! %s", \ get_xpu_error_message(res))); \ if ((dy != nullptr) && (len != n)) { \ int res = xpu::reduce_ew(dev_ctx.x_context(), dy_data, dy->data(), \ pre, n, post, xpu::ElementwiseOp::ASSIGN); \ PADDLE_ENFORCE_EQ( \ res, xpu::Error_t::SUCCESS, \ platform::errors::External("XPU kernel error occur! %s", \ get_xpu_error_message(res))); \ dev_ctx.Wait(); \ xpu_free(dy_data); \ } \ if ((len != n || dx == nullptr || dy == nullptr) && \ !(dy != nullptr && len != n)) { \ dev_ctx.Wait(); \ } \ if (dx == nullptr) { \ xpu_free(dx_data); \ } \ if (dy == nullptr) { \ xpu_free(dy_data); \ } \ if (use_x_y_data) { \ if (len != n) { \ xpu_free(y_broadcast); \ } \ } \ } \ } namespace paddle { namespace operators { template struct XPUAddFunctor { int operator()(xpu::Context* ctx, const T* x, const T* y, T* z, int len) { return xpu::elementwise_add(ctx, x, y, z, len); } }; template struct XPUMulFunctor { int operator()(xpu::Context* ctx, const T* x, const T* y, T* z, int len) { return xpu::elementwise_mul(ctx, x, y, z, len); } }; template void XPUElementwise(const framework::ExecutionContext& ctx) { PADDLE_ENFORCE_EQ(platform::is_xpu_place(ctx.GetPlace()), true, platform::errors::PreconditionNotMet( "This kernel only runs on XPU device.")); auto x_var = ctx.InputVar("X"); PADDLE_ENFORCE_NE(x_var, nullptr, platform::errors::InvalidArgument( "Cannot get input Variable X")); PADDLE_ENFORCE_EQ( x_var->IsType(), true, platform::errors::InvalidArgument( "XPU only support LoDTensor, Input(X) is not LoDTensor")); auto x = x_var->Get(); auto* y = ctx.Input("Y"); auto* z = ctx.Output("Out"); z->mutable_data(ctx.GetPlace()); int axis = ctx.Attr("axis"); auto x_dims = x.dims(); auto y_dims_untrimed = y->dims(); PADDLE_ENFORCE_GE(x_dims.size(), y_dims_untrimed.size(), platform::errors::InvalidArgument( "Rank of first input must >= rank of second input.")); axis = (axis == -1 ? x_dims.size() - y_dims_untrimed.size() : axis); PADDLE_ENFORCE_EQ( axis >= 0 && axis < x_dims.size(), true, platform::errors::InvalidArgument("Axis should be in range [0, x_dims)")); auto y_dims = trim_trailing_singular_dims(y_dims_untrimed); axis = (y_dims.size() == 0) ? x_dims.size() : axis; int pre, n, post, is_common_broadcast; get_mid_dims(x_dims, y_dims, axis, &pre, &n, &post, &is_common_broadcast); PADDLE_ENFORCE_NE(is_common_broadcast, 1, platform::errors::Unimplemented( "X's shape should be equal to Y's shape.")); int len = pre * n * post; const T* x_data = x.data(); const T* y_data = y->data(); T* z_data = z->data(); T* y_broadcast = nullptr; auto& dev_ctx = ctx.template device_context(); if (post == 1) { if (std::is_same>::value) { int res = xpu::matrix_vector_add(dev_ctx.x_context(), x_data, y_data, z_data, pre, n); PADDLE_ENFORCE_EQ(res, xpu::Error_t::SUCCESS, platform::errors::External("XPU kernel error occur! %s", get_xpu_error_message(res))); return; } if (std::is_same>::value) { int res = xpu::matrix_vector_mul(dev_ctx.x_context(), x_data, y_data, z_data, pre, n); PADDLE_ENFORCE_EQ(res, xpu::Error_t::SUCCESS, platform::errors::External("XPU kernel error occur! %s", get_xpu_error_message(res))); return; } } if (pre != 1 || post != 1) { XPU_MALLOC(&y_broadcast, len * sizeof(T)); int res = xpu::broadcast_ew(dev_ctx.x_context(), y_data, y_broadcast, pre, n, post, xpu::ElementwiseOp::ASSIGN); PADDLE_ENFORCE_EQ(res, xpu::Error_t::SUCCESS, platform::errors::External("XPU kernel error occur! %s", get_xpu_error_message(res))); y_data = y_broadcast; } Functor functor; int res = functor(dev_ctx.x_context(), x_data, y_data, z_data, len); PADDLE_ENFORCE_EQ(res, xpu::Error_t::SUCCESS, platform::errors::External("XPU kernel error occur! %s", get_xpu_error_message(res))); if (pre != 1 || post != 1) { dev_ctx.Wait(); xpu_free(y_broadcast); } } } // namespace operators } // namespace paddle #endif