# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ paddle.distributed.launch is a module that spawns multiple distributed process on each training node for gpu training. Usage: In both of single node training or multiple node training, this module launch a process on each of the given gpu card. 1. for single node training with all visible gpu cards: python -m paddle.distributed.launch \ your_training_py (arg1 arg2 and all others) 2. for single node training with [0,4) cards python -m paddle.distributed.launch --selected_gpus="0,1,2,3" \ your_training_py (arg1 arg2 and all others) 3. for multiple node training such as two node:192.168.0.16, 192.168.0.17 on 192.168.0.16: python -m paddle.distributed.launch --cluster_node_ips="192.168.0.16,192.168.0.17" \ --node_ip=192.168.0.16 \ your_training_py (arg1 arg2 and all others) on 192.168.0.17: python -m paddle.distributed.launch --cluster_node_ips="192.168.0.16,192.168.0.17" \ --node_ip=192.168.0.17 \ your_training_py (arg1 arg2 and all others) """ from __future__ import print_function import logging import sys from sys import version import subprocess import os import time import six import copy from argparse import ArgumentParser, REMAINDER import paddle.fluid as fluid logger = logging.getLogger() logger.setLevel(logging.INFO) log_handler = logging.StreamHandler() log_format = logging.Formatter( '%(levelname)s %(asctime)s %(filename)s:%(lineno)d] %(message)s') log_handler.setFormatter(log_format) logger.addHandler(log_handler) def _print_arguments(args): print("----------- Configuration Arguments -----------") for arg, value in sorted(six.iteritems(vars(args))): print("%s: %s" % (arg, value)) print("------------------------------------------------") def _parse_args(): """ Helper function parsing the command line options @retval ArgumentParser """ parser = ArgumentParser( description='''start paddle training using multi-process mode. NOTE: your train program ***must*** run as distributed nccl2 mode, see: http://www.paddlepaddle.org/documentation/docs/zh/1.6/user_guides/howto/training/cluster_howto.html#permalink-8--nccl2- And your train program must read environment variables below in order to let different process init properly: FLAGS_selected_gpus PADDLE_TRAINER_ID PADDLE_CURRENT_ENDPOINT PADDLE_TRAINERS_NUM PADDLE_TRAINER_ENDPOINTS POD_IP (current node ip address, not needed for local training) ''') #Optional arguments for the launch helper parser.add_argument( "--cluster_node_ips", type=str, default="127.0.0.1", help="Paddle cluster nodes ips, such as 192.168.0.16,192.168.0.17..") parser.add_argument( "--node_ip", type=str, default="127.0.0.1", help="The current node ip. ") parser.add_argument( "--use_paddlecloud", action='store_true', help="wheter to use paddlecloud platform to run your multi-process job. If false, no need to set this argument." ) parser.add_argument( "--started_port", type=int, default=6170, help="The trainer's started port on a single node") parser.add_argument( "--print_config", type=bool, default=True, help="Print the config or not") parser.add_argument( "--selected_gpus", type=str, default=None, help="It's for gpu training and the training process will run on the selected_gpus," "each process is bound to a single GPU. And if it's not set, this module will use all the gpu cards for training." ) parser.add_argument( "--log_dir", type=str, help="The path for each process's log.If it's not set, the log will printed to default pipe." ) #positional parser.add_argument( "training_script", type=str, help="The full path to the single GPU training " "program/script to be launched in parallel, " "followed by all the arguments for the " "training script") #rest from the training program parser.add_argument('training_script_args', nargs=REMAINDER) return parser.parse_args() def terminate_procs(procs): for p in procs: if p.poll() is None: p.terminate() def start_procs(args): """ """ default_env = os.environ.copy() current_node_ip = args.node_ip node_ips = [x.strip() for x in args.cluster_node_ips.split(',')] node_id = node_ips.index(current_node_ip) if args.use_paddlecloud: trainer_nums = int(os.getenv("PADDLE_TRAINERS_NUM", "1")) if trainer_nums != 1: #you can automatically get ip info while using paddlecloud multi nodes mode. current_node_ip = os.getenv("POD_IP") assert current_node_ip is not None, "POD_IP should not be None" node_ips = os.getenv("PADDLE_TRAINERS") assert node_ips is not None, "PADDLE_TRAINERS should not be None" node_ips = node_ips.split(",") node_id = os.getenv("PADDLE_TRAINER_ID") assert node_id is not None, "PADDLE_TRAINER_ID should not be None" node_id = int(node_id) if args.node_ip != "127.0.0.1" and current_node_ip != args.node_ip: logger.warning( "Please NOTE: When using paddlecloud, current_node_ip is \ automatically got from POD_IP. Your input node_ip: {} doesn't equals to \ current_node_ip: {} from paddlecloud environment." .format(args.node_ip, current_node_ip)) if args.cluster_node_ips != "127.0.0.1" and args.cluster_node_ips != ",".join( node_ips): logger.warning( "Please NOTE: When using paddlecloud, cluster_node_ips is \ automatically got from PADDLE_TRAINERS(multi nodes) or POD_IP(single node).\ Your input cluster_node_ips: {} doesn't equals to IPs: {} from \ paddlecloud environment.".format(args.cluster_node_ips, node_ips)) num_nodes = len(node_ips) if args.selected_gpus is None: gpus_num = fluid.core.get_cuda_device_count() selected_gpus = [str(x) for x in range(0, gpus_num)] else: cuda_visible_devices = os.getenv("CUDA_VISIBLE_DEVICES") if cuda_visible_devices is None or cuda_visible_devices == "": selected_gpus = [x.strip() for x in args.selected_gpus.split(',')] else: # change selected_gpus into relative values # e.g. CUDA_VISIBLE_DEVICES=4,5,6,7; args.selected_gpus=4,5,6,7; # therefore selected_gpus=0,1,2,3 cuda_visible_devices_list = cuda_visible_devices.split(',') for x in args.selected_gpus.split(','): assert x in cuda_visible_devices_list, "Can't find "\ "your selected_gpus %s in CUDA_VISIBLE_DEVICES[%s]."\ % (x, cuda_visible_devices) selected_gpus = [ cuda_visible_devices_list.index(x.strip()) for x in args.selected_gpus.split(',') ] selected_gpus_num = len(selected_gpus) if args.use_paddlecloud and num_nodes > 1: cloud_paddle_port = os.getenv("PADDLE_PORT", "") cloud_paddle_port_num = os.getenv("PADDLE_PORTS_NUM", "") if cloud_paddle_port != "" and cloud_paddle_port_num != "": cloud_paddle_port_num = int(cloud_paddle_port_num) if cloud_paddle_port_num >= selected_gpus_num: args.started_port = int(cloud_paddle_port) logger.warning("Use Cloud specified port:{}.".format( cloud_paddle_port)) trainers_endpoints = "" for ip in node_ips: for i in range(selected_gpus_num): if trainers_endpoints != "": trainers_endpoints += "," trainers_endpoints += "%s:%d" % (ip, args.started_port + i) nranks = num_nodes * selected_gpus_num if args.print_config: print("trainers_endpoints:", trainers_endpoints, ", node_id:", node_id, ", current_node_ip:", current_node_ip, ", num_nodes:", num_nodes, ", node_ips:", node_ips, ", nranks:", nranks) current_env = copy.copy(default_env) #paddle broadcast ncclUniqueId use socket, and #proxy maybe make trainers unreachable, so delete them. #if we set them to "", grpc will log error message "bad uri" #so just delete them. current_env.pop("http_proxy", None) current_env.pop("https_proxy", None) procs = [] log_fns = [] cmds = [] ranks = [] for i in range(0, selected_gpus_num): rank = (node_id * selected_gpus_num + i) current_env.update({ "FLAGS_selected_gpus": "%s" % selected_gpus[i], "PADDLE_TRAINER_ID": "%d" % rank, "PADDLE_CURRENT_ENDPOINT": "%s:%d" % (current_node_ip, args.started_port + i), "PADDLE_TRAINERS_NUM": "%d" % nranks, "PADDLE_TRAINER_ENDPOINTS": trainers_endpoints }) cmd = [sys.executable, "-u", args.training_script ] + args.training_script_args cmds.append(cmd) if args.log_dir is not None: os.system("mkdir -p {}".format(args.log_dir)) fn = open("%s/workerlog.%d" % (args.log_dir, i), "w") log_fns.append(fn) proc = subprocess.Popen(cmd, env=current_env, stdout=fn, stderr=fn) else: proc = subprocess.Popen(cmd, env=current_env) procs.append(proc) ranks.append(rank) try: alive = True error = False error_rank = [] # wait all process finish or one error while alive and not error: alive = False for rank, p in zip(ranks, procs): ret = p.poll() if ret is None: alive = True elif ret != 0: error = True error_rank.append(rank) time.sleep(1) if error: terminate_procs(procs) exit(1) except KeyboardInterrupt: logger.warning("KeyboardInterrupt, exit") terminate_procs(procs) raise except SystemExit: logger.error( "ABORT!!! Out of all {} trainers, the trainer process with rank={} was aborted. Please check its log.". format(nranks, error_rank)) terminate_procs(procs) raise except: logger.error( "ABORT!!! Out of all {} trainers, the trainer process with rank={} was aborted. Please check its log.". format(nranks, error_rank)) terminate_procs(procs) raise finally: for fn in log_fns: fn.close() def launch(): args = _parse_args() if args.print_config: _print_arguments(args) start_procs(args) if __name__ == "__main__": launch()