/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/operators/math/math_function.h" #include "paddle/fluid/operators/math/pooling.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; template class MaxPoolWithIndexKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { const Tensor* in_x = context.Input("X"); Tensor* out = context.Output("Out"); Tensor* mask = context.Output("Mask"); std::vector ksize = context.Attr>("ksize"); std::vector strides = context.Attr>("strides"); std::vector paddings = context.Attr>("paddings"); auto& dev_ctx = context.template device_context(); if (context.Attr("global_pooling")) { for (size_t i = 0; i < ksize.size(); ++i) { paddings[i] = 0; ksize[i] = static_cast(in_x->dims()[i + 2]); } } switch (ksize.size()) { case 2: { paddle::operators::math::MaxPool2dWithIndexFunctor pool2d_forward; pool2d_forward(dev_ctx, *in_x, ksize, strides, paddings, out, mask); } break; case 3: { paddle::operators::math::MaxPool3dWithIndexFunctor pool3d_forward; pool3d_forward(dev_ctx, *in_x, ksize, strides, paddings, out, mask); } break; default: { PADDLE_THROW("Pool op only supports 2D and 3D input."); } } } }; template class MaxPoolWithIndexGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { const Tensor* mask = context.Input("Mask"); const Tensor* out_grad = context.Input(framework::GradVarName("Out")); Tensor* in_x_grad = context.Output(framework::GradVarName("X")); std::vector ksize = context.Attr>("ksize"); std::vector strides = context.Attr>("strides"); std::vector paddings = context.Attr>("paddings"); if (context.Attr("global_pooling")) { for (size_t i = 0; i < ksize.size(); ++i) { paddings[i] = 0; ksize[i] = static_cast(in_x_grad->dims()[i + 2]); } } if (in_x_grad) { in_x_grad->mutable_data(context.GetPlace()); auto& device_ctx = context.template device_context(); math::set_constant(device_ctx, in_x_grad, 0); switch (ksize.size()) { case 2: { paddle::operators::math::MaxPool2dWithIndexGradFunctor pool2d_backward; pool2d_backward(device_ctx, *out_grad, *mask, ksize, strides, paddings, in_x_grad); } break; case 3: { paddle::operators::math::MaxPool3dWithIndexGradFunctor pool3d_backward; pool3d_backward(device_ctx, *out_grad, *mask, ksize, strides, paddings, in_x_grad); } break; default: { PADDLE_THROW("Pool op only supports 2D and 3D input."); } } } } }; } // namespace operators } // namespace paddle