# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from . import collective from .. import core OpRole = core.op_proto_and_checker_maker.OpRole from paddle.distributed import fleet class AscendTranspiler(collective.Collective): def __init__(self, startup_program, main_program): self.nrings = 1 super(AscendTranspiler, self).__init__(self.nrings) self._startup_program = startup_program self._main_program = main_program def _insert_allreduce_ops(self): block = self._main_program.global_block() ring_id = -1 grad = None for idx, op in reversed(list(enumerate(block.ops))): if self._is_backward_op(op) and \ self.op_role_var_key in op.attr_names: op_role_var = op.all_attrs()[self.op_role_var_key] if len(op_role_var) == 0: continue assert len(op_role_var) % 2 == 0 offset = idx for i in range(0, len(op_role_var), 2): param = block.vars[op_role_var[i]] grad = block.vars[op_role_var[i + 1]] if param.is_distributed: continue # As we search ops reversedly, we should insert c_allreduce_sum # op in the same way to keep the ring_id alternate ring_id = (ring_id + 1) % self.nrings block._insert_op( offset + 1, type='c_allreduce_sum', inputs={'X': grad}, outputs={'Out': grad}, attrs={ 'ring_id': ring_id, self.op_role_key: OpRole.Backward }) block._insert_op( offset + 2, type='scale', inputs={'X': grad}, outputs={'Out': grad}, attrs={ 'scale': 1.0 / fleet.worker_num(), self.op_role_key: OpRole.Backward }) if grad is None: return def transpile(self): self._insert_allreduce_ops()