/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include "ModelConfig.pb.h" #include "paddle/gserver/layers/DataLayer.h" #include "paddle/gserver/layers/LinearChainCRF.h" #include "LayerGradUtil.h" #include "paddle/testing/TestUtil.h" using namespace paddle; // NOLINT DECLARE_int32(gpu_id); DECLARE_bool(thread_local_rand_use_global_seed); static inline bool getNextSequence(std::vector& seq, int numClasses) { for (auto& v : seq) { if (++v < numClasses) { return true; } v = 0; } return false; } // log(exp(x) + exp(y)) static inline real logSum(real x, real y) { real maxValue = std::max(x, y); if (std::isinf(maxValue)) { return -std::numeric_limits::infinity(); } else { return maxValue + log(exp(x - maxValue) + exp(y - maxValue)); } } static inline std::vector genRandLabels(int numClasses, int length) { std::vector labels(length); for (int i = 0; i < length; ++i) { labels[i] = rand() % numClasses; // NOLINT } return labels; } TEST(CRFLayer, cost) { const int numClasses = 4; CpuVector para(numClasses * (numClasses + 2)); real* a = para.getData(); real* b = para.getData() + numClasses; real* w = para.getData() + 2 * numClasses; LinearChainCRF crf(4, para.getData()); for (int length : {1, 2, 3, 10}) { for (int tries = 0; tries < 10; ++tries) { CpuMatrix x(length, numClasses); x.randomizeUniform(); para.randnorm(0, 2); std::vector goldenLabels = genRandLabels(numClasses, length); real cost = crf.forward(x.getData(), goldenLabels.data(), length); real logZ = -std::numeric_limits::infinity(); real logNominator = -std::numeric_limits::infinity(); std::vector testResult(length, 0); do { real score = a[testResult.front()]; score += x.getElement(0, testResult.front()); for (int k = 1; k < length; ++k) { score += x.getElement(k, testResult[k]) + w[numClasses * testResult[k - 1] + testResult[k]]; } score += b[testResult.back()]; logZ = logSum(logZ, score); if (goldenLabels == testResult) { logNominator = score; } } while (getNextSequence(testResult, numClasses)); real trueCost = -logNominator + logZ; real diff = fabs(trueCost - cost); diff /= fabs(cost) < fabs(trueCost) ? fabs(cost) : fabs(trueCost); VLOG(1) << "cost=" << cost << " trueCost=" << trueCost << " diff=" << diff << std::endl; if (typeid(real) == typeid(double)) { // NOLINT EXPECT_LE(diff, 1e-10); } else { EXPECT_LE(diff, 5e-3); } } } } inline real epsilon() { return typeid(real) == typeid(double) ? 1e-10 : 0.06; } TestConfig initTestConfig(size_t numClasses, bool withWeight) { TestConfig config; config.layerConfig.set_type("crf"); config.layerConfig.set_size(numClasses); config.biasSize = 0; config.inputDefs.push_back({INPUT_SEQUENCE_DATA, "layer_0", numClasses, numClasses * (numClasses + 2)}); config.layerConfig.add_inputs(); config.inputDefs.push_back( {INPUT_SEQUENCE_LABEL, "layer_label", numClasses, 0}); config.layerConfig.add_inputs(); if (withWeight) { config.inputDefs.push_back({INPUT_DENSE_DIM_DATA, "layer_weight", 1, 0}); config.layerConfig.add_inputs(); } return config; } TEST(Layer, CRFLayer) { size_t numClasses = 10; for (int tries = 0; tries < 5; ++tries) { TestConfig config = initTestConfig(numClasses, /* withWeight= */ false); for (int length : {1, 3, 100}) { // Not support GPU now testLayerGrad(config, "crf", length, /* trans= */ false, /* useGpu= */ false, /* useWeight= */ false, epsilon()); } } } TEST(Layer, CRFLayerUseWeight) { size_t numClasses = 10; for (int tries = 0; tries < 5; ++tries) { TestConfig config = initTestConfig(numClasses, /* withWeight= */ true); for (int length : {1, 3, 100}) { // Not support GPU now testLayerGrad(config, "crf", length, /* trans= */ false, /* useGpu= */ false, /* useWeight= */ false, epsilon()); } } } int main(int argc, char** argv) { initMain(argc, argv); hl_start(); hl_init(FLAGS_gpu_id); FLAGS_thread_local_rand_use_global_seed = true; srand(1); testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); }