// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/framework/reader.h" namespace paddle { namespace framework { DDim ReaderBase::shape(size_t idx) const { PADDLE_ENFORCE_LT( idx, shapes_.size(), "Cannot get the %d'th shape, 'shapes_' only has %d elements.", idx, shapes_.size()); return shapes_[idx]; } void ShuffleReader::ReadNext(std::vector* out) { if (iteration_pos_ >= buffer_.size()) { // Reload buffer with new data buffer_.clear(); buffer_.reserve(buffer_size_); for (int i = 0; i < buffer_size_; ++i) { if (reader_->HasNext()) { buffer_.push_back(std::vector()); reader_->ReadNext(&buffer_.back()); } else { break; } } // TODO(fengjiayi): 'std::random_shuffle' can be very slow. It needs to be // optimize. std::random_shuffle(buffer_.begin(), buffer_.end()); iteration_pos_ = 0; } out->clear(); if (!buffer_.empty()) { std::swap(*out, buffer_[iteration_pos_++]); } // if buffer_ is empty, the 'out' will return as an empty vector. } void BatchReader::ReadNext(std::vector* out) { buffer_.clear(); buffer_.reserve(batch_size_); for (int i = 0; i < batch_size_; ++i) { if (reader_->HasNext()) { buffer_.push_back(std::vector()); reader_->ReadNext(&buffer_.back()); } else { break; } } // Concat instances out->clear(); if (buffer_.empty()) { // if buffer_ is empty, the 'out' will return as an empty vector. return; } int out_num = buffer_[0].size(); out->reserve(out_num); for (int j = 0; j < out_num; ++j) { // Merge shape and check date type std::type_index batch_type = buffer_[0][j].type(); DDim batch_shape = buffer_[0][j].dims(); for (size_t i = 1; i < buffer_.size(); ++i) { std::type_index ins_type = buffer_[i][j].type(); DDim ins_shape = buffer_[i][j].dims(); PADDLE_ENFORCE_EQ(batch_type, ins_type); PADDLE_ENFORCE_EQ(slice_ddim(batch_shape, 1, batch_shape.size()), slice_ddim(ins_shape, 1, ins_shape.size())); PADDLE_ENFORCE_GT(ins_shape[0], 0); batch_shape[0] += ins_shape[0]; } LoDTensor out_tensor; out_tensor.Resize(batch_shape); out_tensor.mutable_data(platform::CPUPlace(), batch_type); int64_t dst_offset = 0; // Merge lod and data LoD batch_lod; for (size_t i = 0; i < buffer_.size(); ++i) { DDim ins_shape = buffer_[i][j].dims(); LoD ins_lod = buffer_[i][j].lod(); if (i == 0) { batch_lod = ins_lod; } else { PADDLE_ENFORCE_EQ(batch_lod.size(), ins_lod.size()); for (size_t level_idx = 0; level_idx < batch_lod.size(); ++level_idx) { auto& lod_level = batch_lod[level_idx]; for (size_t k = 1; k < ins_lod[level_idx].size(); ++k) { lod_level.push_back(ins_lod[level_idx][k] + lod_level.back()); } } } Tensor dst = out_tensor.Slice(dst_offset, dst_offset + ins_shape[0]); TensorCopy(buffer_[i][j], platform::CPUPlace(), &dst); dst_offset += ins_shape[0]; } out_tensor.set_lod(batch_lod); out->push_back(out_tensor); } } } // namespace framework } // namespace paddle