// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include #include #include #include #include "paddle/fluid/inference/api/paddle_inference_api.h" DEFINE_int32(repeat, 1, "repeat"); namespace paddle { namespace inference { using paddle::PaddleTensor; using paddle::contrib::AnalysisConfig; template void GetValueFromStream(std::stringstream *ss, T *t) { (*ss) >> (*t); } template <> void GetValueFromStream(std::stringstream *ss, std::string *t) { *t = ss->str(); } // Split string to vector template void Split(const std::string &line, char sep, std::vector *v) { std::stringstream ss; T t; for (auto c : line) { if (c != sep) { ss << c; } else { GetValueFromStream(&ss, &t); v->push_back(std::move(t)); ss.str({}); ss.clear(); } } if (!ss.str().empty()) { GetValueFromStream(&ss, &t); v->push_back(std::move(t)); ss.str({}); ss.clear(); } } template constexpr paddle::PaddleDType GetPaddleDType(); template <> constexpr paddle::PaddleDType GetPaddleDType() { return paddle::PaddleDType::INT64; } template <> constexpr paddle::PaddleDType GetPaddleDType() { return paddle::PaddleDType::FLOAT32; } // Parse tensor from string template bool ParseTensor(const std::string &field, paddle::PaddleTensor *tensor) { std::vector data; Split(field, ':', &data); if (data.size() < 2) return false; std::string shape_str = data[0]; std::vector shape; Split(shape_str, ' ', &shape); std::string mat_str = data[1]; std::vector mat; Split(mat_str, ' ', &mat); tensor->shape = shape; auto size = std::accumulate(shape.begin(), shape.end(), 1, std::multiplies()) * sizeof(T); tensor->data.Resize(size); std::copy(mat.begin(), mat.end(), static_cast(tensor->data.data())); tensor->dtype = GetPaddleDType(); return true; } // Parse input tensors from string bool ParseLine(const std::string &line, std::vector *tensors) { std::vector fields; Split(line, ';', &fields); if (fields.size() < 5) return false; tensors->clear(); tensors->reserve(5); int i = 0; // src_id paddle::PaddleTensor src_id; ParseTensor(fields[i++], &src_id); tensors->push_back(src_id); // pos_id paddle::PaddleTensor pos_id; ParseTensor(fields[i++], &pos_id); tensors->push_back(pos_id); // segment_id paddle::PaddleTensor segment_id; ParseTensor(fields[i++], &segment_id); tensors->push_back(segment_id); // self_attention_bias paddle::PaddleTensor self_attention_bias; ParseTensor(fields[i++], &self_attention_bias); tensors->push_back(self_attention_bias); // next_segment_index paddle::PaddleTensor next_segment_index; ParseTensor(fields[i++], &next_segment_index); tensors->push_back(next_segment_index); return true; } // Print outputs to log void PrintOutputs(const std::vector &outputs) { LOG(INFO) << "example_id\tcontradiction\tentailment\tneutral"; for (size_t i = 0; i < outputs.front().data.length(); i += 3) { LOG(INFO) << (i / 3) << "\t" << static_cast(outputs.front().data.data())[i] << "\t" << static_cast(outputs.front().data.data())[i + 1] << "\t" << static_cast(outputs.front().data.data())[i + 2]; } } bool LoadInputData(std::vector> *inputs) { if (FLAGS_infer_data.empty()) { LOG(ERROR) << "please set input data path"; return false; } std::ifstream fin(FLAGS_infer_data); std::string line; int lineno = 0; while (std::getline(fin, line)) { std::vector feed_data; if (!ParseLine(line, &feed_data)) { LOG(ERROR) << "Parse line[" << lineno << "] error!"; } else { inputs->push_back(std::move(feed_data)); } } return true; } void SetConfig(contrib::AnalysisConfig *config) { config->SetModel(FLAGS_infer_model); } void profile(bool use_mkldnn = false) { contrib::AnalysisConfig config; SetConfig(&config); if (use_mkldnn) { config.EnableMKLDNN(); } std::vector outputs; std::vector> inputs; LoadInputData(&inputs); TestPrediction(reinterpret_cast(&config), inputs, &outputs, FLAGS_num_threads); } void compare(bool use_mkldnn = false) { AnalysisConfig config; SetConfig(&config); std::vector> inputs; LoadInputData(&inputs); CompareNativeAndAnalysis( reinterpret_cast(&config), inputs); } TEST(Analyzer_bert, profile) { profile(); } #ifdef PADDLE_WITH_MKLDNN TEST(Analyzer_bert, profile_mkldnn) { profile(true); } #endif } // namespace inference } // namespace paddle