# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from collections import defaultdict import paddle from paddle.nn import Layer from paddle.jit import to_static, not_to_static from paddle.fluid.framework import Operator, Parameter, _non_static_mode from paddle.fluid.framework import program_guard from paddle.fluid.executor import global_scope from paddle.fluid.dygraph.dygraph_to_static.program_translator import StaticFunction from .utils import to_list from .utils import get_logger from .converter import Converter class ProxyLayer(Layer): """ ProxyLayer implements all logic for converting dygraph model into static Program IR. Meanwhile, it provides conviential interfaces for auto parallel to visit feed/fetch/loss/metric variables. """ def __init__(self, layer, loss_func, metrics): super(ProxyLayer, self).__init__() # NOTE: All verify logics are finished in Engine.Prepare self.inner_layer = layer self.loss_func = loss_func self.metrics = metrics # train / eval / predict self.mode = None # generated program vars self._input_vars = defaultdict(list) self._label_vars = defaultdict(list) self._output_vars = defaultdict(list) self._loss_vars = defaultdict(list) self._metric_vars = defaultdict(list) def _train(self, inputs, labels): """ Train process of inner_layer with forward/loss/metric logic. """ # step 1. save feed variables of Program mode = 'train' self._input_vars[mode] = inputs self._label_vars[mode] = labels # step 2. call inner_layer.forward self._output_vars[mode] = self.inner_layer(*inputs) # step 3. calculate loss if needed new_inputs = self._prepare(self.output_vars, labels) self._loss_vars[mode] = self.call_loss(new_inputs) # step 4. calculate metrics if needed self._metric_vars[mode] = self.call_metrics(new_inputs) def _eval(self, inputs, labels): """ Evaluate process of inner_layer with forward/loss/metric logic. """ # TODO(dev): we can reuse codes with self._train after making # sure if they can. # step 1. save feed variables of Program mode = 'eval' self._input_vars[mode] = inputs self._label_vars[mode] = labels # step 2. call inner_layer.forward self._output_vars[mode] = self.inner_layer(*inputs) # step 3. calculate loss if needed new_inputs = self._prepare(self.output_vars, labels) self._loss_vars[mode] = self.call_loss(new_inputs) # step 4. calculate metrics if needed self._metric_vars[mode] = self.call_metrics(new_inputs) def _predict(self, inputs, labels): """ Predict process of inner_layer with forward logic. """ # step 1. save feed variables of Program mode = 'predict' self._input_vars[mode] = inputs self._label_vars[mode] = labels # step 2. call inner_layer.forward self._output_vars[mode] = self.inner_layer(*inputs) @not_to_static def _prepare(self, outputs, labels): """ Concat outputs and labels as a single list NOTE(dev): We use @not_to_static to avoid AST Analysis. """ return to_list(outputs) + to_list(labels) def call_loss(self, inputs): """ Apply Loss Function on outputs and labels. Args: inputs: List[Variable] Returns: List[Variable] """ res = [] if self.loss_func is not None: res = self.loss_func(*inputs) return res def call_metrics(self, inputs): """ Apply Metrics Function on outputs and labels. Args: inputs: List[Variable] Returns: List[Variable] """ outs = [] for metric in self.metrics: outs.extend(metric.compute(*inputs)) return outs def set_mode(self, mode): self.mode = mode self.training = mode == 'train' def clone(self): return ProxyLayer(self.inner_layer, self.loss_func, self.metrics) @property def input_vars(self): return self._input_vars[self.mode] @property def label_vars(self): return self._label_vars[self.mode] @property def output_vars(self): return self._output_vars[self.mode] @property def loss_vars(self): return self._loss_vars[self.mode] @property def metric_vars(self): return self._metric_vars[self.mode] @property def startup_program(self): return self.inner_layer._startup_program() class BuildInfo: def __init__(self): self.clear() def has_cache(self, mode, update=False): is_cache = self.states[mode] if update: self.cache(mode) return is_cache def cache(self, mode): self.states[mode] = True def clear(self): self.states = defaultdict(bool) class ProgramHelper(object): """ A Helper class for Engine to provides different Program IR according specified 'mode'. """ def __init__(self, layer, loss_func, metrics, inputs_spec, labels_spec): # original model config information # TODO(Aurelius84): Implenet append_backward and optimizer in ProxyLayer # after distribute engine satisify basic condition. self.proxy_layer = ProxyLayer(layer, loss_func, metrics) self.inputs_spec = inputs_spec self.labels_spec = labels_spec self.build_info = BuildInfo() self._logger = get_logger(logging.INFO) self.lazy_init = False def reset(self): """ Reset all state of current Object. """ self.build_info.clear() self.proxy_layer = self.proxy_layer.clone() def build_program(self, mode): """ Convert dygraph model into static Program IR. """ assert mode in ['train', 'eval', 'predict'] self.proxy_layer.set_mode(mode) # skip if we has already built program. if self.build_info.has_cache(mode, True): self._logger.info( "Already build program with mode = %s, use cached program." % mode) return self._logger.info("start to build program for mode = %s." % mode) input_spec = [self.inputs_spec, self.labels_spec] static_func = to_static(self.static_func(), input_spec=input_spec) func_name = '_' + mode setattr(self.proxy_layer, func_name, static_func) # NOTE(dev): Because @to_static is a Lazy mechanism, so we explicitly call this to trigger # generating Program IR immediately. getattr(self.proxy_layer, func_name).concrete_program self._build_startup_program() def _build_startup_program(self): """ Create and Sync parameters into startup program. """ if len(self.startup_program.global_block().ops) > 1: self.lazy_init = True return for param in self.concrete_program.parameters: Parameter(name=param.name, desc=param, type=param.type, shape=param.shape, dtype=param.dtype, stop_gradient=param.stop_gradient, block=self.startup_program.global_block()) def apply_optimizer(self, optimizer): """ Append backward and generate optimizer operations. """ self._verify_optimizer(optimizer) self._logger.info("start to apply optimizer: %s ", type(optimizer).__name__) # clear optimizer parameters original_params = optimizer._parameter_list optimizer._parameter_list = None with program_guard(self.main_program, self.startup_program): res = optimizer.minimize(self.loss_vars[0]) # restore optimizer parameters optimizer._parameter_list = original_params return res def _verify_optimizer(self, optimizer): assert optimizer is not None assert hasattr(optimizer, "minimize"), "Optimizer must have minimize() method." assert self.proxy_layer.mode == 'train', "Required mode == 'train', but received '%s'" % self.proxy_layer.mode assert len( self.loss_vars ) == 1, "Required len(loss_vars) == 1, but received len(loss_vars) = %s" % len( self.loss_vars) def to(self, mode): """ Switch underly proxy layer mode into target mode. """ assert mode in ['train', 'eval', 'predict'] func = getattr(self.proxy_layer, '_' + mode) assert isinstance( func, StaticFunction), "Please call build_program(mode) firstly." self.proxy_layer.set_mode(mode) def static_func(self): """ Return StaticFunction instance with underly target mode. """ assert self.proxy_layer.mode in [ 'train', 'eval', 'predict' ], "Please call build_program(mode) firstly." func_name = '_' + self.proxy_layer.mode return getattr(self.proxy_layer, func_name) def init(self, main_program, place, dist_context): if self.lazy_init: return for param in self.concrete_program.parameters: # create var in scope and share parameters to scope if param.name not in main_program.global_block().vars: continue # get param_var's dist_attr var = main_program.global_block().vars[param.name] var_dist_attr = dist_context.get_tensor_dist_attr_for_program(var) dist_attr = { "dims_mapping": var_dist_attr.dims_mapping, "process_shape": var_dist_attr.process_mesh.topology, "process_group": var_dist_attr.process_mesh.processes } # slice param_value with dist_attr # share sliced_param_value with param_tensor in global_scope param_tensor = global_scope().var(param.name).get_tensor() sliced_param = Converter.slice_with_dist_attr( param.numpy(), dist_attr) param_tensor.set(sliced_param, place) @property def concrete_program(self): return self.static_func().concrete_program @property def main_program(self): return self.concrete_program.main_program @property def startup_program(self): try: return self.proxy_layer.startup_program except Exception as err: if isinstance(err, AssertionError): return self.concrete_program.startup_program raise err @property def input_vars(self): return to_list(self.proxy_layer.input_vars) @property def output_vars(self): return to_list(self.proxy_layer.output_vars) @property def label_vars(self): return to_list(self.proxy_layer.label_vars) @property def loss_vars(self): return to_list(self.proxy_layer.loss_vars) @property def metric_vars(self): return to_list(self.proxy_layer.metric_vars)