"""VGG16 benchmark in Fluid""" from __future__ import print_function import sys import time import numpy as np import paddle.v2 as paddle import paddle.v2.fluid as fluid import paddle.v2.fluid.core as core import argparse import functools import os def str2bool(v): if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise argparse.ArgumentTypeError('Boolean value expected.') parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( '--batch_size', type=int, default=128, help="Batch size for training.") parser.add_argument( '--learning_rate', type=float, default=1e-3, help="Learning rate for training.") parser.add_argument('--num_passes', type=int, default=50, help="No. of passes.") parser.add_argument( '--device', type=str, default='CPU', choices=['CPU', 'GPU'], help="The device type.") parser.add_argument( '--data_format', type=str, default='NCHW', choices=['NCHW', 'NHWC'], help='The data order, now only support NCHW.') parser.add_argument( '--data_set', type=str, default='cifar10', choices=['cifar10', 'flowers'], help='Optional dataset for benchmark.') parser.add_argument( '--local', type=str2bool, default=True, help='Whether to run as local mode.') args = parser.parse_args() def vgg16_bn_drop(input): def conv_block(input, num_filter, groups, dropouts): return fluid.nets.img_conv_group( input=input, pool_size=2, pool_stride=2, conv_num_filter=[num_filter] * groups, conv_filter_size=3, conv_act='relu', conv_with_batchnorm=True, conv_batchnorm_drop_rate=dropouts, pool_type='max') conv1 = conv_block(input, 64, 2, [0.3, 0]) conv2 = conv_block(conv1, 128, 2, [0.4, 0]) conv3 = conv_block(conv2, 256, 3, [0.4, 0.4, 0]) conv4 = conv_block(conv3, 512, 3, [0.4, 0.4, 0]) conv5 = conv_block(conv4, 512, 3, [0.4, 0.4, 0]) drop = fluid.layers.dropout(x=conv5, dropout_prob=0.5) fc1 = fluid.layers.fc(input=drop, size=512, act=None) bn = fluid.layers.batch_norm(input=fc1, act='relu') drop2 = fluid.layers.dropout(x=bn, dropout_prob=0.5) fc2 = fluid.layers.fc(input=drop2, size=512, act=None) return fc2 def main(): if args.data_set == "cifar10": classdim = 10 if args.data_format == 'NCHW': data_shape = [3, 32, 32] else: data_shape = [32, 32, 3] else: classdim = 102 if args.data_format == 'NCHW': data_shape = [3, 224, 224] else: data_shape = [224, 224, 3] # Input data images = fluid.layers.data(name='pixel', shape=data_shape, dtype='float32') label = fluid.layers.data(name='label', shape=[1], dtype='int64') # Train program net = vgg16_bn_drop(images) predict = fluid.layers.fc(input=net, size=classdim, act='softmax') cost = fluid.layers.cross_entropy(input=predict, label=label) avg_cost = fluid.layers.mean(x=cost) # Evaluator accuracy = fluid.evaluator.Accuracy(input=predict, label=label) # inference program inference_program = fluid.default_main_program().clone() with fluid.program_guard(inference_program): test_target = accuracy.metrics + accuracy.states inference_program = fluid.io.get_inference_program(test_target) # Optimization optimizer = fluid.optimizer.Adam(learning_rate=args.learning_rate) optimize_ops, params_grads = optimizer.minimize(avg_cost) # Initialize executor place = core.CPUPlace() if args.device == 'CPU' else core.CUDAPlace(0) exe = fluid.Executor(place) # test def test(exe): accuracy.reset(exe) for batch_id, data in enumerate(test_reader()): img_data = np.array(map(lambda x: x[0].reshape(data_shape), data)).astype("float32") y_data = np.array(map(lambda x: x[1], data)).astype("int64") y_data = y_data.reshape([-1, 1]) exe.run(inference_program, feed={"pixel": img_data, "label": y_data}) return accuracy.eval(exe) def train_loop(exe, trainer_prog): iters = 0 ts = time.time() for pass_id in range(args.num_passes): # train start_time = time.time() num_samples = 0 accuracy.reset(exe) for batch_id, data in enumerate(train_reader()): ts = time.time() img_data = np.array(map(lambda x: x[0].reshape(data_shape), data)).astype("float32") y_data = np.array(map(lambda x: x[1], data)).astype("int64") y_data = y_data.reshape([-1, 1]) loss, acc = exe.run(trainer_prog, feed={"pixel": img_data, "label": y_data}, fetch_list=[avg_cost] + accuracy.metrics) iters += 1 num_samples += len(data) print( "Pass = %d, Iters = %d, Loss = %f, Accuracy = %f, spent %f" % (pass_id, iters, loss, acc, time.time() - ts) ) # The accuracy is the accumulation of batches, but not the current batch. pass_elapsed = time.time() - start_time pass_train_acc = accuracy.eval(exe) pass_test_acc = test(exe) print( "Pass = %d, Training performance = %f imgs/s, Train accuracy = %f, Test accuracy = %f\n" % (pass_id, num_samples / pass_elapsed, pass_train_acc, pass_test_acc)) if args.local: # Parameter initialization exe.run(fluid.default_startup_program()) # data reader train_reader = paddle.batch( paddle.reader.shuffle( paddle.dataset.cifar.train10() if args.data_set == 'cifar10' else paddle.dataset.flowers.train(), buf_size=5120), batch_size=args.batch_size) test_reader = paddle.batch( paddle.dataset.cifar.test10() if args.data_set == 'cifar10' else paddle.dataset.flowers.test(), batch_size=args.batch_size) train_loop(exe, fluid.default_main_program()) else: pserver_ips = os.getenv("PADDLE_INIT_PSERVERS") # all pserver endpoints eplist = [] for ip in pserver_ips.split(","): eplist.append(':'.join([ip, "6174"])) pserver_endpoints = ",".join(eplist) print("pserver endpoints: ", pserver_endpoints) trainers = int(os.getenv("TRAINERS")) # total trainer count current_endpoint = os.getenv("POD_IP") + ":6174" # current pserver endpoint training_role = os.getenv("TRAINING_ROLE", "TRAINER") # get the training role: trainer/pserver t = fluid.DistributeTranspiler() t.transpile( optimize_ops, params_grads, pservers=pserver_endpoints, trainers=trainers) if training_role == "PSERVER": if not current_endpoint: print("need env SERVER_ENDPOINT") exit(1) pserver_prog = t.get_pserver_program(current_endpoint) pserver_startup = t.get_startup_program(current_endpoint, pserver_prog) print("starting server side startup") exe.run(pserver_startup) print("starting parameter server...") exe.run(pserver_prog) elif training_role == "TRAINER": # Parameter initialization exe.run(fluid.default_startup_program()) # data reader train_reader = paddle.batch( paddle.reader.shuffle( paddle.dataset.cifar.train10() if args.data_set == 'cifar10' else paddle.dataset.flowers.train(), buf_size=5120), batch_size=args.batch_size) test_reader = paddle.batch( paddle.dataset.cifar.test10() if args.data_set == 'cifar10' else paddle.dataset.flowers.test(), batch_size=args.batch_size) trainer_prog = t.get_trainer_program() feeder = fluid.DataFeeder(feed_list=[images, label], place=place) # TODO(typhoonzero): change trainer startup program to fetch parameters from pserver exe.run(fluid.default_startup_program()) train_loop(exe, trainer_prog) else: print("environment var TRAINER_ROLE should be TRAINER os PSERVER") def print_arguments(): print('----------- Configuration Arguments -----------') for arg, value in sorted(vars(args).iteritems()): print('%s: %s' % (arg, value)) print('------------------------------------------------') if __name__ == "__main__": print_arguments() main()