/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #include #include "./paddle/utils/CommandLineParser.h" #include "ModelConfig.pb.h" #include "paddle/gserver/layers/DataLayer.h" #include "paddle/gserver/layers/ExpandConvTransLayer.h" #include "paddle/math/MathUtils.h" #include "paddle/trainer/Trainer.h" #include "paddle/utils/GlobalConstants.h" #include "LayerGradUtil.h" #include "TestUtil.h" using namespace paddle; // NOLINT using namespace std; // NOLINT P_DECLARE_bool(use_gpu); P_DECLARE_int32(gpu_id); P_DECLARE_double(checkgrad_eps); P_DECLARE_bool(thread_local_rand_use_global_seed); P_DECLARE_bool(prev_batch_state); // Do one forward pass of priorBox layer and check to see if its output // matches the given result void doOnePriorBoxTest(size_t featureMapWidth, size_t featureMapHeight, size_t imageWidth, size_t imageHeight, vector minSize, vector maxSize, vector aspectRatio, vector variance, MatrixPtr& result) { // Setting up the priorbox layer TestConfig configt; configt.layerConfig.set_type("priorbox"); configt.inputDefs.push_back({INPUT_DATA, "featureMap", 1, 0}); LayerInputConfig* input = configt.layerConfig.add_inputs(); configt.inputDefs.push_back({INPUT_DATA, "image", 1, 0}); configt.layerConfig.add_inputs(); PriorBoxConfig* pb = input->mutable_priorbox_conf(); for (size_t i = 0; i < minSize.size(); i++) pb->add_min_size(minSize[i]); for (size_t i = 0; i < maxSize.size(); i++) pb->add_max_size(maxSize[i]); for (size_t i = 0; i < aspectRatio.size(); i++) pb->add_aspect_ratio(aspectRatio[i]); for (size_t i = 0; i < variance.size(); i++) pb->add_variance(variance[i]); // data layer initialize std::vector dataLayers; LayerMap layerMap; vector datas; initDataLayer( configt, &dataLayers, &datas, &layerMap, "priorbox", 1, false, true); dataLayers[0]->getOutput().setFrameHeight(featureMapHeight); dataLayers[0]->getOutput().setFrameWidth(featureMapWidth); dataLayers[1]->getOutput().setFrameHeight(imageHeight); dataLayers[1]->getOutput().setFrameWidth(imageWidth); // test layer initialize std::vector parameters; LayerPtr priorboxLayer; initTestLayer(configt, &layerMap, ¶meters, &priorboxLayer); priorboxLayer->forward(PASS_GC); checkMatrixEqual(priorboxLayer->getOutputValue(), result); } TEST(Layer, priorBoxLayerFwd) { vector minSize; vector maxSize; vector aspectRatio; vector variance; minSize.push_back(276); maxSize.push_back(330); variance.push_back(0.1); variance.push_back(0.1); variance.push_back(0.2); variance.push_back(0.2); MatrixPtr result; result = Matrix::create(1, 2 * 8, false, false); float resultData[] = {0.04, 0.04, 0.96, 0.96, 0.1, 0.1, 0.2, 0.2, 0, 0, 1, 1, 0.1, 0.1, 0.2, 0.2}; result->setData(resultData); doOnePriorBoxTest(/* featureMapWidth */ 1, /* featureMapHeight */ 1, /* imageWidth */ 300, /* imageHeight */ 300, minSize, maxSize, aspectRatio, variance, result); variance[1] = 0.2; variance[3] = 0.1; maxSize.pop_back(); Matrix::resizeOrCreate(result, 1, 4 * 8, false, false); float resultData2[] = {0, 0, 0.595, 0.595, 0.1, 0.2, 0.2, 0.1, 0.405, 0, 1, 0.595, 0.1, 0.2, 0.2, 0.1, 0, 0.405, 0.595, 1, 0.1, 0.2, 0.2, 0.1, 0.405, 0.405, 1, 1, 0.1, 0.2, 0.2, 0.1}; result->setData(resultData2); doOnePriorBoxTest(/* featureMapWidth */ 2, /* featureMapHeight */ 2, /* imageWidth */ 400, /* imageHeight */ 400, minSize, maxSize, aspectRatio, variance, result); aspectRatio.push_back(2); Matrix::resizeOrCreate(result, 1, 3 * 8, false, false); float resultData3[] = {0.04, 0.04, 0.96, 0.96, 0.1, 0.2, 0.2, 0.1, 0, 0.17473088, 1, 0.825269, 0.1, 0.2, 0.2, 0.1, 0.17473088, 0, 0.825269, 1, 0.1, 0.2, 0.2, 0.1}; result->setData(resultData3); doOnePriorBoxTest(/* featureMapWidth */ 1, /* featureMapHeight */ 1, /* imageWidth */ 300, /* imageHeight */ 300, minSize, maxSize, aspectRatio, variance, result); } int main(int argc, char** argv) { testing::InitGoogleTest(&argc, argv); initMain(argc, argv); FLAGS_thread_local_rand_use_global_seed = true; srand(1); return RUN_ALL_TESTS(); }