// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/lite/kernels/arm/softmax_compute.h" #include #include #include #include "paddle/fluid/lite/core/op_registry.h" namespace paddle { namespace lite { namespace kernels { namespace arm { template void softmax_compute_ref(const operators::SoftmaxParam& param) { const dtype* x_data = param.x->mutable_data(); dtype* output_data = param.output->mutable_data(); DDim x_dims = param.x->dims(); ASSERT_EQ(x_dims.data(), param.output->dims().data()); auto x_rank = x_dims.size(); int axis = param.axis; if (axis < 0) { axis += x_rank; } int axis_size = x_dims[axis]; int outer_num = x_dims.Slice(0, axis).production(); int inner_num = x_dims.Slice(axis + 1, x_rank).production(); int compute_size = outer_num * inner_num; for (int i = 0; i < compute_size; i++) { int idx_inner = i % inner_num; int idx_outer = (i / inner_num) * axis_size; int start = idx_outer * inner_num + idx_inner; int offset; offset = start; dtype max_data = std::numeric_limits::lowest(); for (int j = 0; j < axis_size; j++) { max_data = x_data[offset] > max_data ? x_data[offset] : max_data; offset += inner_num; } offset = start; dtype sum_data = (dtype)0; for (int j = 0; j < axis_size; j++) { output_data[offset] = exp(x_data[offset] - max_data); sum_data += output_data[offset]; offset += inner_num; } offset = start; for (int j = 0; j < axis_size; j++) { output_data[offset] /= sum_data; offset += inner_num; } } } TEST(softmax_arm, init) { SoftmaxCompute softmax; ASSERT_EQ(softmax.precision(), PRECISION(kFloat)); ASSERT_EQ(softmax.target(), TARGET(kARM)); } TEST(softmax_arm, compute) { SoftmaxCompute softmax; operators::SoftmaxParam param; lite::Tensor x; lite::Tensor output; lite::Tensor output_ref; #if 1 for (auto n : {1, 3}) { for (auto c : {1, 4}) { for (auto h : {5, 1}) { for (auto w : {1, 6}) { for (auto axis : {-2, -1, 0, 1, 2}) { #else for (auto n : {1, 3, 4, 11}) { for (auto c : {1, 3, 11, 4}) { for (auto h : {3, 1, 11, 4}) { for (auto w : {1, 3, 4, 12}) { for (auto axis : {-4, -3, -2, -1, 0, 1, 2, 3}) { #endif x.Resize(DDim(std::vector({n, c, h, w}))); output.Resize(DDim(std::vector({n, c, h, w}))); output_ref.Resize(DDim(std::vector({n, c, h, w}))); auto* x_data = x.mutable_data(); auto* output_data = output.mutable_data(); auto* output_ref_data = output_ref.mutable_data(); for (int i = 0; i < x.dims().production(); i++) { x_data[i] = i; } param.x = &x; param.axis = axis; param.output = &output; softmax.SetParam(param); softmax.Run(); param.output = &output_ref; softmax_compute_ref(param); for (int i = 0; i < output.dims().production(); i++) { EXPECT_NEAR(output_data[i], output_ref_data[i], 1e-5); } } } } } } } TEST(softmax, retrive_op) { auto softmax = KernelRegistry::Global().Create( "softmax"); ASSERT_FALSE(softmax.empty()); ASSERT_TRUE(softmax.front()); } } // namespace arm } // namespace kernels } // namespace lite } // namespace paddle USE_LITE_KERNEL(softmax, kARM, kFloat, kNCHW, def);