# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections from paddle.trainer_config_helpers.default_decorators import wrap_name_default import paddle.trainer_config_helpers as conf_helps class Layer(object): def __init__(self, name=None, size=None, parent_layers=None): assert isinstance(parent_layers, dict) self.name = name self.__contex__ = {} self.__parent_layers__ = parent_layers def to_proto(self, context): """ function to set proto attribute """ kwargs = dict() for layer_name in self.__parent_layers__: if not isinstance(self.__parent_layers__[layer_name], collections.Sequence): v1_layer = self.__parent_layers__[layer_name].to_proto( context=context) else: v1_layer = map(lambda x: x.to_proto(context=context), self.__parent_layers__[layer_name]) kwargs[layer_name] = v1_layer if self.context_name() is None: return self.to_proto_impl(**kwargs) elif self.context_name() not in context: context[self.context_name()] = self.to_proto_impl(**kwargs) self.__contex__ = context if self.use_context_name(): return context[self.context_name()] else: return context[self.name] def to_proto_impl(self, **kwargs): raise NotImplementedError() def context_name(self): """ Context name means the context which stores `to_proto_impl` result. If multiple layer share same context_name, the `to_proto_impl` of them will be invoked only once. """ return self.name def use_context_name(self): return False def calcalted_size(self): return self.__contex__[self.context_name()].size def __convert_to_v2__(method_name, parent_names, is_default_name=True): if is_default_name: wrapper = wrap_name_default(name_prefix=method_name) else: wrapper = None class V2LayerImpl(Layer): def __init__(self, **kwargs): parent_layers = dict() other_kwargs = dict() for pname in parent_names: if kwargs.has_key(pname): parent_layers[pname] = kwargs[pname] for key in kwargs.keys(): if key not in parent_names: other_kwargs[key] = kwargs[key] name = kwargs.get('name', None) size = kwargs.get('size', None) super(V2LayerImpl, self).__init__(name, size, parent_layers) self.__other_kwargs__ = other_kwargs if wrapper is not None: __init__ = wrapper(__init__) def to_proto_impl(self, **kwargs): args = dict() for each in kwargs: args[each] = kwargs[each] for each in self.__other_kwargs__: args[each] = self.__other_kwargs__[each] return getattr(conf_helps, method_name)(**args) return V2LayerImpl