/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "paddle/fluid/framework/data_set.h" #include #include "google/protobuf/io/zero_copy_stream_impl.h" #include "google/protobuf/message.h" #include "google/protobuf/text_format.h" #include "paddle/fluid/framework/data_feed_factory.h" #include "paddle/fluid/framework/io/fs.h" #include "paddle/fluid/platform/timer.h" #if defined _WIN32 || defined __APPLE__ #else #define _LINUX #endif namespace paddle { namespace framework { // constructor template DatasetImpl::DatasetImpl() { thread_num_ = 1; trainer_num_ = 1; file_idx_ = 0; } // set filelist, file_idx_ will reset to zero. template void DatasetImpl::SetFileList(const std::vector& filelist) { VLOG(3) << "filelist size: " << filelist.size(); filelist_ = filelist; file_idx_ = 0; } // set expect thread num. actually it may change template void DatasetImpl::SetThreadNum(int thread_num) { VLOG(3) << "SetThreadNum thread_num=" << thread_num; thread_num_ = thread_num; } // if you run distributed, and want to do global shuffle, // set this before global shuffle. // be sure you call CreateReaders before SetTrainerNum template void DatasetImpl::SetTrainerNum(int trainer_num) { trainer_num_ = trainer_num; // should inform reader of trainer_num directly for (auto reader : readers_) { reader->SetTrainerNum(trainer_num); } } // if you run distributed, and want to do global shuffle, // set this before global shuffle. // be sure you call CreateReaders before SetFleetSendBatchSize template void DatasetImpl::SetFleetSendBatchSize(int64_t size) { fleet_send_batch_size_ = size; for (auto reader : readers_) { reader->SetFleetSendBatchSize(size); } } template void DatasetImpl::SetHdfsConfig(const std::string& fs_name, const std::string& fs_ugi) { fs_name_ = fs_name; fs_ugi_ = fs_ugi; std::string cmd = std::string("hadoop fs"); cmd += " -D fs.default.name=" + fs_name; cmd += " -D hadoop.job.ugi=" + fs_ugi; paddle::framework::hdfs_set_command(cmd); } template void DatasetImpl::SetDataFeedDesc(const std::string& data_feed_desc_str) { google::protobuf::TextFormat::ParseFromString(data_feed_desc_str, &data_feed_desc_); } // readers_.size() may not be equal to thread_num_, // it changes when filelist_.size() < thread_num_ template std::vector>& DatasetImpl::GetReaders() { return readers_; } // if sent message between workers, should first call this function template void DatasetImpl::RegisterClientToClientMsgHandler() { auto fleet_ptr = FleetWrapper::GetInstance(); VLOG(3) << "RegisterClientToClientMsgHandler"; fleet_ptr->RegisterClientToClientMsgHandler( 0, [this](int msg_type, int client_id, const std::string& msg) -> int { return this->ReceiveFromClient(msg_type, client_id, msg); }); VLOG(3) << "RegisterClientToClientMsgHandler done"; } // load data into memory, Dataset hold this memory, // which will later be fed into readers' channel template void DatasetImpl::LoadIntoMemory() { VLOG(3) << "DatasetImpl::LoadIntoMemory() begin"; platform::Timer timeline; timeline.Start(); if (readers_.size() == 0) { CreateReaders(); } std::vector load_threads; for (int64_t i = 0; i < thread_num_; ++i) { load_threads.push_back(std::thread( &paddle::framework::DataFeed::LoadIntoMemory, readers_[i].get())); } for (std::thread& t : load_threads) { t.join(); } timeline.Pause(); VLOG(3) << "DatasetImpl::LoadIntoMemory() end" << ", memory data size=" << memory_data_.size() << ", cost time=" << timeline.ElapsedSec() << " seconds"; } // release memory data template void DatasetImpl::ReleaseMemory() { VLOG(3) << "DatasetImpl::ReleaseMemory() begin"; std::vector().swap(memory_data_); VLOG(3) << "DatasetImpl::ReleaseMemory() end"; } // do local shuffle template void DatasetImpl::LocalShuffle() { VLOG(3) << "DatasetImpl::LocalShuffle() begin"; platform::Timer timeline; timeline.Start(); if (readers_.size() == 0) { CreateReaders(); } // if it is not InMemory, memory_data_ is empty std::random_shuffle(memory_data_.begin(), memory_data_.end()); std::vector local_shuffle_threads; for (int64_t i = 0; i < thread_num_; ++i) { local_shuffle_threads.push_back(std::thread( &paddle::framework::DataFeed::LocalShuffle, readers_[i].get())); } for (std::thread& t : local_shuffle_threads) { t.join(); } std::vector().swap(memory_data_); timeline.Pause(); VLOG(3) << "DatasetImpl::LocalShuffle() end, cost time=" << timeline.ElapsedSec() << " seconds"; } template void DatasetImpl::GlobalShuffle() { VLOG(3) << "DatasetImpl::GlobalShuffle() begin"; platform::Timer timeline; timeline.Start(); if (readers_.size() == 0) { CreateReaders(); } // if it is not InMemory, memory_data_ is empty std::random_shuffle(memory_data_.begin(), memory_data_.end()); VLOG(3) << "start global shuffle threads"; std::vector global_shuffle_threads; for (int i = 0; i < thread_num_; ++i) { global_shuffle_threads.push_back(std::thread( &paddle::framework::DataFeed::GlobalShuffle, readers_[i].get())); } for (std::thread& t : global_shuffle_threads) { t.join(); } std::vector().swap(memory_data_); timeline.Pause(); VLOG(3) << "DatasetImpl::GlobalShuffle() end, cost time=" << timeline.ElapsedSec() << " seconds"; } template void DatasetImpl::CreateReaders() { VLOG(3) << "Calling CreateReaders()"; CHECK(thread_num_ > 0) << "thread_num should > 0"; int file_cnt = filelist_.size(); int memory_data_size = memory_data_.size(); if (memory_data_size != 0 && thread_num_ > memory_data_size) { VLOG(3) << "Dataset thread num = " << thread_num_ << ", memory data size = " << memory_data_size << ". Changing Dataset thread num = " << memory_data_size; thread_num_ = memory_data_size; } else if (file_cnt != 0 && thread_num_ > file_cnt) { VLOG(3) << "Dataset thread num = " << thread_num_ << ", file num = " << file_cnt << ". Changing Dataset thread num = " << file_cnt; thread_num_ = file_cnt; } VLOG(3) << "thread_num in Readers: " << thread_num_; VLOG(3) << "readers size: " << readers_.size(); VLOG(3) << "Filelist size in readers: " << filelist_.size(); if (readers_.size() != 0) { return; } VLOG(3) << "data feed class name: " << data_feed_desc_.name(); for (int i = 0; i < thread_num_; ++i) { readers_.push_back(DataFeedFactory::CreateDataFeed(data_feed_desc_.name())); readers_.back()->Init(data_feed_desc_); readers_.back()->SetMemoryData(&memory_data_); readers_.back()->SetMemoryDataMutex(&mutex_for_update_memory_data_); readers_.back()->SetThreadId(i); readers_.back()->SetThreadNum(thread_num_); readers_.back()->SetTrainerNum(trainer_num_); readers_.back()->SetFileListMutex(&mutex_for_pick_file_); readers_.back()->SetFileListIndex(&file_idx_); readers_.back()->SetFileList(filelist_); } } template void DatasetImpl::DestroyReaders() { VLOG(3) << "Calling DestroyReaders()"; // clear memory_data_ before fill it // because if LoadIntoMemory but no Shuffle, // memory_data_ has empty data which has been std::move to channel if (memory_data_.size() != 0) { std::vector().swap(memory_data_); } std::vector fill_threads; for (int i = 0; i < thread_num_; ++i) { fill_threads.push_back( std::thread(&paddle::framework::DataFeed::FillChannelToMemoryData, readers_[i].get())); } for (std::thread& t : fill_threads) { t.join(); } std::vector>().swap(readers_); VLOG(3) << "readers size: " << readers_.size(); // if memory_data_ is empty, which means it's not InMemory mode, // so the next epoch should read all data again if (memory_data_.size() == 0) { file_idx_ = 0; } } template int DatasetImpl::ReceiveFromClient(int msg_type, int client_id, const std::string& msg) { #ifdef _LINUX VLOG(3) << "ReceiveFromClient msg_type=" << msg_type << ", client_id=" << client_id << ", msg length=" << msg.length(); auto fleet_ptr = FleetWrapper::GetInstance(); int64_t index = rand_r(&rand_seed) % thread_num_; VLOG(3) << "ramdom index=" << index; readers_[index]->PutInsToChannel(msg); #endif return 0; } // explicit instantiation template class DatasetImpl>; } // end namespace framework } // end namespace paddle