/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "paddle/fluid/framework/pten_utils.h" #include "paddle/fluid/operators/elementwise/elementwise_op.h" #include "paddle/fluid/operators/elementwise/elementwise_op_function.h" #include "paddle/fluid/operators/math/blas.h" // only can include the headers in paddle/pten/include dirs #include "paddle/pten/api/lib/utils/tensor_utils.h" #include "paddle/pten/include/core.h" #include "paddle/pten/kernels/math_kernel.h" namespace paddle { namespace operators { template void default_elementwise_sub(const framework::ExecutionContext& ctx, const framework::Tensor* x, const framework::Tensor* y, framework::Tensor* z) { int axis = ctx.Attr("axis"); auto x_dims = x->dims(); auto y_dims = y->dims(); if (x_dims.size() >= y_dims.size()) { ElementwiseComputeEx, DeviceContext, T>(ctx, x, y, axis, SubFunctor(), z); } else { ElementwiseComputeEx, DeviceContext, T>( ctx, x, y, axis, InverseSubFunctor(), z); } } template class ElementwiseSubKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto* x = ctx.Input("X"); auto* y = ctx.Input("Y"); auto* z = ctx.Output("Out"); z->mutable_data(ctx.GetPlace()); auto& dev_ctx = ctx.device_context(); int axis = ctx.Attr("axis"); auto pt_x = paddle::experimental::MakePtenDenseTensor(*x); auto pt_y = paddle::experimental::MakePtenDenseTensor(*y); auto pt_z = paddle::experimental::MakePtenDenseTensor(*z); pten::SubtractKernel(dev_ctx, *pt_x.get(), *pt_y.get(), axis, pt_z.get()); } }; template struct SubGradDX { HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout; } }; template struct SubGradDY { HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return -dout; } }; template typename std::enable_if< std::is_same::value>::type default_elementwise_sub_grad(const framework::ExecutionContext& ctx, const framework::Tensor* x, const framework::Tensor* y, const framework::Tensor* out, const framework::Tensor* dout, framework::Tensor* dx, framework::Tensor* dy) { int axis = ctx.Attr("axis"); ElemwiseExplicitGradCompute, SubGradDY>( ctx, *x, *y, *out, *dout, axis, dx, dy, SubGradDX(), SubGradDY()); } template typename std::enable_if< std::is_same::value>::type elementwise_sub_grad(const framework::ExecutionContext& ctx, const framework::Tensor* x, const framework::Tensor* y, const framework::Tensor* out, const framework::Tensor* dout, framework::Tensor* dx, framework::Tensor* dy) { default_elementwise_sub_grad(ctx, x, y, out, dout, dx, dy); } #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) // cuda definition template typename std::enable_if< std::is_same::value>::type default_elementwise_sub_grad(const framework::ExecutionContext& ctx, const framework::Tensor* x, const framework::Tensor* y, const framework::Tensor* out, const framework::Tensor* dout, framework::Tensor* dx, framework::Tensor* dy); template typename std::enable_if< std::is_same::value>::type elementwise_sub_grad(const framework::ExecutionContext& ctx, const framework::Tensor* x, const framework::Tensor* y, const framework::Tensor* out, const framework::Tensor* dout, framework::Tensor* dx, framework::Tensor* dy); #endif template class ElementwiseSubGradKernel : public ElemwiseGradKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { ElemwiseGradKernel::Compute(ctx); using Tensor = framework::Tensor; auto* x = ctx.Input("X"); auto* y = ctx.Input("Y"); auto* dout = ctx.Input(framework::GradVarName("Out")); auto* dx = ctx.Output(framework::GradVarName("X")); auto* dy = ctx.Output(framework::GradVarName("Y")); // skip out auto* out = dout; if (dx != nullptr && dy != nullptr && (dx->dims() == dy->dims())) { elementwise_sub_grad(ctx, x, y, out, dout, dx, dy); } else { default_elementwise_sub_grad(ctx, x, y, out, dout, dx, dy); } } }; template class ElementwiseSubDoubleGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { using Tensor = framework::Tensor; auto* y = ctx.Input("Y"); auto* dout = ctx.Input("DOut"); auto* ddx = ctx.Input("DDX"); auto* ddy = ctx.Input("DDY"); auto* ddout = ctx.Output("DDOut"); // DDOut = ddx - ddy if (ddout) { Tensor ddx_safe, ddy_safe; GetDoubleGradSafeTensor(ctx, dout, ddx, &ddx_safe); GetDoubleGradSafeTensor(ctx, y, ddy, &ddy_safe); ddout->mutable_data(ctx.GetPlace()); int axis = ctx.Attr("axis"); ElementwiseComputeEx, DeviceContext, T>( ctx, &ddx_safe, &ddy_safe, axis, SubFunctor(), ddout); } } }; } // namespace operators } // namespace paddle