// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once // CUDA and HIP use same api #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) #include "paddle/pten/api/ext/dispatch.h" #include "paddle/pten/backends/gpu/gpu_context.h" #include "paddle/pten/common/scalar.h" #include "paddle/pten/core/dense_tensor.h" #include "paddle/pten/kernels/hybird/cuda/reduce/reduce_cuda_impl.h" namespace pten { template class ReduceOp, template class TransformOp> void Reduce(const GPUContext& dev_ctx, const DenseTensor& x, bool reduce_all, const std::vector& dims, bool keep_dim, DataType out_dtype, DenseTensor* out) { std::vector reduce_dims = pten::kernels::details::GetReduceDim(dims, x.dims().size(), reduce_all); int reduce_num = 1; for (auto i : reduce_dims) { reduce_num *= (x.dims())[i]; } gpuStream_t stream = dev_ctx.stream(); if (out_dtype != pten::DataType::UNDEFINED && out_dtype != x.dtype()) { PD_DISPATCH_FLOATING_AND_COMPLEX_AND_2_TYPES( pten::DataType::INT32, pten::DataType::INT64, out_dtype, "TensorReduceFunctorImpl", ([&] { using MPType = typename kps::details::MPTypeTrait::Type; pten::kernels::TensorReduceFunctorImpl>( x, out, TransformOp(reduce_num), reduce_dims, stream); })); } else { using MPType = typename kps::details::MPTypeTrait::Type; pten::kernels:: TensorReduceFunctorImpl>( x, out, TransformOp(reduce_num), reduce_dims, stream); } } } // namespace pten #endif