// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/lite/kernels/arm/pool_compute.h" #include #include #include "paddle/fluid/lite/arm/math/funcs.h" #include "paddle/fluid/lite/core/op_registry.h" #include "paddle/fluid/lite/core/type_system.h" namespace paddle { namespace lite { namespace kernels { namespace arm { void PoolCompute::PrepareForRun() { auto& ctx = this->ctx_->template As(); } void PoolCompute::Run() { auto& param = Param(); auto& in_dims = param.x->dims(); auto& out_dims = param.output->dims(); const float* din = param.x->data(); float* dout = param.output->mutable_data(); std::vector& ksize = param.ksize; std::vector& strides = param.strides; std::vector& paddings = param.paddings; std::string& pooling_type = param.pooling_type; bool global_pooling = param.global_pooling; bool exclusive = param.exclusive; bool adaptive = param.adaptive; bool ceil_mode = param.ceil_mode; bool use_quantizer = param.use_quantizer; std::string& data_format = param.data_format; if (param.global_pooling) { for (size_t i = 0; i < ksize.size(); ++i) { paddings[i] = 0; ksize[i] = static_cast(in_dims[i + 2]); } } #if 0 for (int i = 0; i < in_dims.size(); ++i) { LOG(INFO) << "in_dims[" << i << "]:" << in_dims[i]; } for (int i = 0; i < out_dims.size(); ++i) { LOG(INFO) << "out_dims[" << i << "]:" << out_dims[i]; } for (int i = 0; i < ksize.size(); ++i) { LOG(INFO) << "ksize[" << i << "]:" << ksize[i]; } for (int i = 0; i < strides.size(); ++i) { LOG(INFO) << "strides[" << i << "]:" << strides[i]; } for (int i = 0; i < paddings.size(); ++i) { LOG(INFO) << "paddings[" << i << "]:" << paddings[i]; } LOG(INFO) << "global_pooling:" << global_pooling; LOG(INFO) << "exclusive:" << exclusive; LOG(INFO) << "adaptive:" << adaptive; LOG(INFO) << "ceil_mode:" << ceil_mode; LOG(INFO) << "use_quantizer:" << use_quantizer; LOG(INFO) << "data_format:" << data_format; LOG(INFO) << "din:" << din; LOG(INFO) << "dout:" << dout; #endif // global if (global_pooling == true) { lite::arm::math::pooling_global( din, dout, out_dims[0], out_dims[1], out_dims[2], out_dims[3], in_dims[1], in_dims[2], in_dims[3], ksize, strides, paddings, global_pooling, exclusive, adaptive, ceil_mode, use_quantizer, pooling_type); } else if (ksize[0] == 2 && ksize[0] == ksize[1] && strides[0] == 2 && strides[0] == strides[1]) { if (pooling_type == "max") { lite::arm::math::pooling2x2s2_max( din, dout, out_dims[0], out_dims[1], out_dims[2], out_dims[3], in_dims[1], in_dims[2], in_dims[3], ksize, strides, paddings, global_pooling, exclusive, adaptive, ceil_mode, use_quantizer, pooling_type); } else if (pooling_type == "avg") { lite::arm::math::pooling2x2s2_ave( din, dout, out_dims[0], out_dims[1], out_dims[2], out_dims[3], in_dims[1], in_dims[2], in_dims[3], ksize, strides, paddings, global_pooling, exclusive, adaptive, ceil_mode, use_quantizer, pooling_type); } } else if (ksize[0] == 3 && ksize[0] == ksize[1] && strides[0] == 1 && strides[0] == strides[1] && paddings[0] == 1) { if (pooling_type == "max") { lite::arm::math::pooling3x3s1p1_max( din, dout, out_dims[0], out_dims[1], out_dims[2], out_dims[3], in_dims[1], in_dims[2], in_dims[3], ksize, strides, paddings, global_pooling, exclusive, adaptive, ceil_mode, use_quantizer, pooling_type); } else if (pooling_type == "avg") { lite::arm::math::pooling3x3s1p1_ave( din, dout, out_dims[0], out_dims[1], out_dims[2], out_dims[3], in_dims[1], in_dims[2], in_dims[3], ksize, strides, paddings, global_pooling, exclusive, adaptive, ceil_mode, use_quantizer, pooling_type); } } else if (ksize[0] == 3 && ksize[0] == ksize[1] && strides[0] == 2 && strides[0] == strides[1] && paddings[0] == 0) { if (pooling_type == "max") { lite::arm::math::pooling3x3s2p0_max( din, dout, out_dims[0], out_dims[1], out_dims[2], out_dims[3], in_dims[1], in_dims[2], in_dims[3], ksize, strides, paddings, global_pooling, exclusive, adaptive, ceil_mode, use_quantizer, pooling_type); } else if (pooling_type == "avg") { lite::arm::math::pooling3x3s2p0_ave( din, dout, out_dims[0], out_dims[1], out_dims[2], out_dims[3], in_dims[1], in_dims[2], in_dims[3], ksize, strides, paddings, global_pooling, exclusive, adaptive, ceil_mode, use_quantizer, pooling_type); } } else if (ksize[0] == 3 && ksize[0] == ksize[1] && strides[0] == 2 && strides[0] == strides[1] && paddings[0] == 1) { if (pooling_type == "max") { lite::arm::math::pooling3x3s2p1_max( din, dout, out_dims[0], out_dims[1], out_dims[2], out_dims[3], in_dims[1], in_dims[2], in_dims[3], ksize, strides, paddings, global_pooling, exclusive, adaptive, ceil_mode, use_quantizer, pooling_type); } else if (pooling_type == "avg") { lite::arm::math::pooling3x3s2p1_ave( din, dout, out_dims[0], out_dims[1], out_dims[2], out_dims[3], in_dims[1], in_dims[2], in_dims[3], ksize, strides, paddings, global_pooling, exclusive, adaptive, ceil_mode, use_quantizer, pooling_type); } } else { lite::arm::math::pooling_basic( din, dout, out_dims[0], out_dims[1], out_dims[2], out_dims[3], in_dims[1], in_dims[2], in_dims[3], ksize, strides, paddings, global_pooling, exclusive, adaptive, ceil_mode, use_quantizer, pooling_type); } return; } TargetType PoolCompute::target() const { return TARGET(kARM); } PrecisionType PoolCompute::precision() const { return PRECISION(kFloat); } } // namespace arm } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL(pool2d, kARM, kFloat, kNCHW, paddle::lite::kernels::arm::PoolCompute, def) .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))}) .Finalize();