// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/lite/kernels/arm/transpose_compute.h" #include #include #include "paddle/fluid/lite/arm/math/funcs.h" #include "paddle/fluid/lite/core/compatible_tensor.h" #include "paddle/fluid/lite/core/op_registry.h" #include "paddle/fluid/lite/core/type_system.h" namespace paddle { namespace lite { namespace kernels { namespace arm { bool IsShuffleChannel(const std::vector &axis) { bool is_shuffle_channel = true; if (axis.size() > 2 && axis[0] == 0 && axis[1] == 2 && axis[2] == 1) { for (int i = 3; i < axis.size(); ++i) { if (axis[i] != i) { is_shuffle_channel = false; break; } } } else { return false; } return is_shuffle_channel; } template void ShuffleChannelCompute(const std::vector &axis, const lite::Tensor *input, lite::Tensor *output) { const Dtype *input_ptr = input->data(); Dtype *output_ptr = output->mutable_data(); // input and output's shape dimension must >= 2 && <= 6. const DDim &in_dim = input->dims(); const DDim &out_dim = output->dims(); size_t offset = 1; for (int i = 3; i < axis.size(); ++i) { offset *= in_dim[i]; } #pragma omp parallel for collapse(3) for (int batch = 0; batch < out_dim[0]; ++batch) { for (int c1 = 0; c1 < out_dim[1]; ++c1) { for (int c2 = 0; c2 < out_dim[2]; ++c2) { size_t out_offset = ((batch * out_dim[1] + c1) * out_dim[2] + c2) * offset; size_t in_offset = ((batch * in_dim[1] + c2) * in_dim[2] + c1) * offset; memcpy(output_ptr + out_offset, input_ptr + in_offset, offset * sizeof(Dtype)); } } } } template void TransposeCompute_(const std::vector &axis, const lite::Tensor *input, lite::Tensor *output) { // const Dtype *input_ptr = input->data(); const Dtype *input_ptr = input->data(); Dtype *output_ptr = output->mutable_data(); // input and output's shape dimension must >= 2 && <= 6. const DDim &in_dim = input->dims(); const DDim &out_dim = output->dims(); // precompute inverted output dim and strides size_t rout_dim[6], strides[6]; int permute = axis.size(); // permute must >=2 && <= 6. for (int i = 0; i < permute; ++i) { int k = permute - 1 - i; strides[k] = 1; for (int j = axis[i] + 1; j < permute; ++j) { strides[k] *= in_dim[j]; } rout_dim[k] = out_dim[i]; } // unroll the first 2 dimensions int reamin_dim = 1; for (int i = 2; i < out_dim.size(); ++i) { reamin_dim *= out_dim[i]; } #pragma omp parallel for collapse(2) for (int batch = 0; batch < out_dim[0]; ++batch) { for (int j = 0; j < out_dim[1]; ++j) { size_t offset = batch * strides[permute - 1] + j * strides[permute - 2]; Dtype *out_ptr = output_ptr + (batch * out_dim[1] + j) * reamin_dim; int indics[4] = {0, 0, 0, 0}; for (int k = 0; k < reamin_dim; ++k) { out_ptr[k] = input_ptr[offset]; indics[0] += 1; offset += strides[0]; for (int p = 0; p < permute - 3; ++p) { if (indics[p] == rout_dim[p]) { indics[p + 1] += 1; indics[p] = 0; offset += strides[p + 1]; offset -= rout_dim[p] * strides[p]; } else { break; } } } } } } // Transpose void TransposeCompute::Run() { auto ¶m = Param(); auto *input = param.x; auto *output = param.output; const std::vector axis = param.axis; bool shuffle_channel = IsShuffleChannel(axis); if (shuffle_channel) { ShuffleChannelCompute(axis, input, output); } else { TransposeCompute_(axis, input, output); } return; } // Transpose2 void Transpose2Compute::Run() { auto ¶m = Param(); auto *input = param.x; auto *output = param.output; const std::vector axis = param.axis; bool shuffle_channel = IsShuffleChannel(axis); if (shuffle_channel) { ShuffleChannelCompute(axis, input, output); } else { TransposeCompute_(axis, input, output); } return; } } // namespace arm } // namespace kernels } // namespace lite } // namespace paddle // Transpose REGISTER_LITE_KERNEL(transpose, kARM, kFloat, kNCHW, paddle::lite::kernels::arm::TransposeCompute, def) .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))}) .Finalize(); // Transpose2 REGISTER_LITE_KERNEL(transpose2, kARM, kFloat, kNCHW, paddle::lite::kernels::arm::Transpose2Compute, def) .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))}) .BindOutput("XShape", {LiteType::GetTensorTy(TARGET(kARM))}) .Finalize();