/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #ifdef PADDLE_WITH_XPU #include #include "paddle/fluid/framework/generator.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/operator.h" #include "paddle/fluid/operators/uniform_random_op.h" namespace paddle { namespace operators { template class XPUUniformRandomKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &ctx) const override { framework::Tensor *tensor = nullptr; auto out_var = ctx.OutputVar("Out"); std::vector new_shape; auto list_new_shape_tensor = ctx.MultiInput("ShapeTensorList"); if (list_new_shape_tensor.size() > 0 || ctx.HasInput("ShapeTensor")) { if (ctx.HasInput("ShapeTensor")) { auto *shape_tensor = ctx.Input("ShapeTensor"); new_shape = GetNewDataFromShapeTensor(shape_tensor); } else if (list_new_shape_tensor.size() > 0) { new_shape = GetNewDataFromShapeTensorList(list_new_shape_tensor); } } if (out_var->IsType()) { auto *selected_rows = out_var->GetMutable(); tensor = selected_rows->mutable_value(); auto shape = ctx.Attr>("shape"); if (!new_shape.empty()) shape = new_shape; tensor->Resize(phi::make_ddim(shape)); selected_rows->mutable_rows()->reserve(shape[0]); } else if (out_var->IsType()) { tensor = out_var->GetMutable(); if (!new_shape.empty()) tensor->Resize(phi::make_ddim(new_shape)); } else { PADDLE_THROW(platform::errors::InvalidArgument( "Expected type of Output(out) in uniform_random_op must be Tensor, " "SelectedRows. But got " "unsupport type: %s.", framework::ToTypeName(out_var->Type()))); } T *data = tensor->mutable_data(ctx.GetPlace()); int64_t size = tensor->numel(); std::unique_ptr data_cpu(new T[size]); std::uniform_real_distribution dist( static_cast(ctx.Attr("min")), static_cast(ctx.Attr("max"))); unsigned int seed = static_cast(ctx.Attr("seed")); auto engine = framework::GetCPURandomEngine(seed); for (int64_t i = 0; i < size; ++i) { data_cpu[i] = dist(*engine); } unsigned int diag_num = static_cast(ctx.Attr("diag_num")); unsigned int diag_step = static_cast(ctx.Attr("diag_step")); auto diag_val = static_cast(ctx.Attr("diag_val")); if (diag_num > 0) { PADDLE_ENFORCE_GT( size, (diag_num - 1) * (diag_step + 1), platform::errors::InvalidArgument( "ShapeInvalid: the diagonal's elements is equal (num-1) " "* (step-1) with num %d, step %d," "It should be smaller than %d, but received %d", diag_num, diag_step, (diag_num - 1) * (diag_step + 1), size)); for (int64_t i = 0; i < diag_num; ++i) { int64_t pos = i * diag_step + i; data_cpu[pos] = diag_val; } } memory::Copy(ctx.GetPlace(), data, platform::CPUPlace(), reinterpret_cast(data_cpu.get()), size * sizeof(T)); } }; } // namespace operators } // namespace paddle REGISTER_OP_XPU_KERNEL(uniform_random, paddle::operators::XPUUniformRandomKernel); #endif // PADDLE_WITH_XPU