/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/inference/tensorrt/convert/op_converter.h" #include "paddle/fluid/inference/tensorrt/plugin/qkv_to_context_plugin.h" namespace paddle { namespace inference { namespace tensorrt { class MultiheadMatMulOpConverter : public OpConverter { public: void operator()(const framework::proto::OpDesc& op, const framework::Scope& scope, bool test_mode) override { #if IS_TRT_VERSION_GE(6000) VLOG(3) << "convert a fluid multihead_mamul op to a corresponding tensorrt " "network structure"; framework::OpDesc op_desc(op, nullptr); // Declare inputs auto* input = engine_->GetITensor(op_desc.Input("Input").front()); // fc weights and fc bias auto weight_name = op_desc.Input("W").front(); auto bias_name = op_desc.Input("Bias").front(); auto* weight_v = scope.FindVar(weight_name); auto* weight_t = weight_v->GetMutable(); auto* bias_v = scope.FindVar(bias_name); auto* bias_t = bias_v->GetMutable(); float* weight_data = nullptr; bool enable_int8 = op_desc.HasAttr("enable_int8"); float in_scale = 0.; if (enable_int8) { PADDLE_ENFORCE_EQ( op_desc.HasAttr("Input_scale"), true, platform::errors::InvalidArgument( "must have input scale in multihead layers in int8 mode")); in_scale = BOOST_GET_CONST(float, op_desc.GetAttr("Input_scale")) * 127; auto weight_scale = BOOST_GET_CONST(std::vector, op_desc.GetAttr("weight_scale")); weight_data = engine_->GetWeightCPUData(weight_name, weight_t, true, weight_scale); engine_->SetTensorDynamicRange(input, in_scale); } else { weight_data = engine_->GetWeightCPUData(weight_name, weight_t, false); } float* bias_data = engine_->GetWeightCPUData(bias_name, bias_t, false); std::vector weight_data_tmp; weight_data_tmp.reserve(weight_t->numel()); memcpy(weight_data_tmp.data(), weight_data, weight_t->numel() * sizeof(float)); // (hidden_in, 3, hidden_out) auto weight_dims = weight_t->dims(); int hidden_in = weight_dims[0]; // channels_in int three = weight_dims[1]; // channels_out int hidden_out = weight_dims[2]; // channels_out int m = hidden_in; int n = three * hidden_out; auto tranpose_weight = [](const float* src, float* dst, int m, int n) { for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { dst[j * m + i] = src[i * n + j]; } } }; tranpose_weight(weight_data_tmp.data(), weight_data, m, n); int head_number = BOOST_GET_CONST(int, op_desc.GetAttr("head_number")); nvinfer1::ILayer* layer = nullptr; auto output_name = op_desc.Output("Out")[0]; if (engine_->with_dynamic_shape()) { if (engine_->use_oss()) { int head_size = hidden_out / head_number; // [3, head_number, head_size, hidden_in] -> [head_number, 3, head_size, // hidden_in] auto transpose_weight_v2 = [](const float* src, float* dst, int three, int head_number, int head_size, int hidden_in) { const int HH = head_size * hidden_in; for (int i = 0; i < three; ++i) { for (int n = 0; n < head_number; ++n) { for (int hh = 0; hh < HH; ++hh) { dst[n * three * HH + i * HH + hh] = src[i * head_number * HH + n * HH + hh]; } } } }; // [3, head_number, head_size] -> [head_number, 3, head_size] auto transpose_bias_v2 = [](const float* src, float* dst, int N, int H) { for (int i = 0; i < 3; ++i) { for (int n = 0; n < N; ++n) { for (int h = 0; h < H; ++h) { dst[n * 3 * H + i * H + h] = src[i * N * H + n * H + h]; } } } }; memcpy(weight_data_tmp.data(), weight_data, weight_t->numel() * sizeof(float)); transpose_weight_v2(weight_data_tmp.data(), weight_data, three, head_number, head_size, hidden_in); nvinfer1::Weights weight{nvinfer1::DataType::kFLOAT, static_cast(weight_data), static_cast(weight_t->numel())}; std::vector bias_data_tmp; bias_data_tmp.reserve(bias_t->numel()); memcpy(bias_data_tmp.data(), bias_data, bias_t->numel() * sizeof(float)); transpose_bias_v2(bias_data_tmp.data(), bias_data, head_number, head_size); nvinfer1::Weights bias{nvinfer1::DataType::kFLOAT, static_cast(bias_data), static_cast(bias_t->numel())}; nvinfer1::ILayer* fc_layer = nullptr; float dp_probs = 1.0 / 127.0; if (enable_int8) { nvinfer1::DimsHW nv_ksize(1, 1); fc_layer = TRT_ENGINE_ADD_LAYER(engine_, Convolution, *input, n, nv_ksize, weight, bias); } else { fc_layer = TRT_ENGINE_ADD_LAYER(engine_, FullyConnected, *input, n, weight, bias); } if (enable_int8) { PADDLE_ENFORCE_EQ( op_desc.HasAttr("out_threshold"), true, platform::errors::InvalidArgument( "must have out threshold in multihead layers in int8 mode")); float out_scale = BOOST_GET_CONST(float, op_desc.GetAttr("out_threshold")); engine_->SetTensorDynamicRange(fc_layer->getOutput(0), out_scale); dp_probs = out_scale / 127.0; } auto mask_tensor = engine_->GetITensor("qkv_plugin_mask"); auto creator = GetPluginRegistry()->getPluginCreator( "CustomQKVToContextPluginDynamic", "2"); assert(creator != nullptr); int type = static_cast((engine_->WithFp16() == 1) ? nvinfer1::DataType::kHALF : nvinfer1::DataType::kFLOAT); if (enable_int8) { type = static_cast(nvinfer1::DataType::kHALF); } bool has_mask = true; int var_seqlen = 1; const std::vector fields{ {"type_id", &type, nvinfer1::PluginFieldType::kINT32, 1}, {"hidden_size", &hidden_out, nvinfer1::PluginFieldType::kINT32, 1}, {"num_heads", &head_number, nvinfer1::PluginFieldType::kINT32, 1}, {"has_mask", &has_mask, nvinfer1::PluginFieldType::kINT32, 1}, {"var_seqlen", &var_seqlen, nvinfer1::PluginFieldType::kINT32, 1}, { "dq_probs", &dp_probs, nvinfer1::PluginFieldType::kFLOAT32, 1 }}; nvinfer1::PluginFieldCollection* plugin_collection = static_cast( malloc(sizeof(*plugin_collection) + fields.size() * sizeof(nvinfer1::PluginField))); // remember to free plugin_collection->nbFields = static_cast(fields.size()); plugin_collection->fields = fields.data(); auto plugin = creator->createPlugin("CustomQKVToContextPluginDynamic", plugin_collection); free(plugin_collection); std::vector plugin_inputs; plugin_inputs.emplace_back(fc_layer->getOutput(0)); plugin_inputs.emplace_back(mask_tensor); plugin_inputs.emplace_back(engine_->GetITensor( engine_->network()->getInput(2)->getName())); // cu_seqlens, // eval_placeholder_2 auto max_seqlen_tensor = engine_->GetITensor(engine_->network()->getInput(3)->getName()); auto* shuffle_layer = TRT_ENGINE_ADD_LAYER( engine_, Shuffle, *const_cast(max_seqlen_tensor)); nvinfer1::Dims shape_dim; shape_dim.nbDims = 1; shape_dim.d[0] = -1; shuffle_layer->setReshapeDimensions(shape_dim); plugin_inputs.emplace_back( shuffle_layer->getOutput(0)); // max_seqlen, eval_placeholder_3 auto plugin_layer = engine_->network()->addPluginV2( plugin_inputs.data(), plugin_inputs.size(), *plugin); layer = plugin_layer; } else { PADDLE_ENFORCE_EQ( input->getDimensions().nbDims, 3, platform::errors::InvalidArgument( "The Input dim of the MultiheadMatMul should be 3, " "but it's (%d) now.", input->getDimensions().nbDims)); // transpose weight_data from m * n to n * m auto* input_bias_qk = engine_->GetITensor(op_desc.Input("BiasQK").front()); TensorRTEngine::Weight weight{nvinfer1::DataType::kFLOAT, static_cast(weight_data), static_cast(weight_t->numel())}; weight.dims.assign({n, m}); TensorRTEngine::Weight bias{nvinfer1::DataType::kFLOAT, static_cast(bias_data), static_cast(bias_t->numel())}; // add shuffle before fc nvinfer1::Dims reshape_before_fc_dim; reshape_before_fc_dim.nbDims = 5; reshape_before_fc_dim.d[0] = 0; reshape_before_fc_dim.d[1] = 0; reshape_before_fc_dim.d[2] = 0; reshape_before_fc_dim.d[3] = 1; reshape_before_fc_dim.d[4] = 1; auto* reshape_before_fc_layer = TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *input); reshape_before_fc_layer->setReshapeDimensions(reshape_before_fc_dim); reshape_before_fc_layer->setName( ("shuffle_before_multihead_mamul(Output: " + output_name + ")") .c_str()); // add layer fc auto* fc_layer = TRT_ENGINE_ADD_LAYER( engine_, FullyConnected, *reshape_before_fc_layer->getOutput(0), n, weight.get(), bias.get()); fc_layer->setName( ("multihead_mamul_fc(Output: " + output_name + ")").c_str()); // no need to add shuffle after fc, just change it in // QkvToContextPluginDynamic // add qkv to context int head_size = hidden_out / head_number; float scale = BOOST_GET_CONST(float, op_desc.GetAttr("alpha")); std::vector plugin_inputs; plugin_inputs.push_back(fc_layer->getOutput(0)); plugin_inputs.push_back(input_bias_qk); bool with_fp16 = engine_->WithFp16() && !engine_->disable_trt_plugin_fp16(); plugin::DynamicPluginTensorRT* plugin = new plugin::QkvToContextPluginDynamic(hidden_in, head_number, head_size, scale, with_fp16); layer = engine_->AddDynamicPlugin(plugin_inputs.data(), 2, plugin); } } else { PADDLE_THROW(platform::errors::Fatal( "You are running the Ernie(Bert) model in static shape mode, which " "is not supported for the time being.\n" "You can use the config.SetTRTDynamicShapeInfo(...) interface to set " "the shape information to run the dynamic shape mode.")); } RreplenishLayerAndOutput(layer, "multihead_matmul", {output_name}, test_mode); #else PADDLE_THROW(platform::errors::Fatal( "You are running the TRT Dynamic Shape mode, need to confirm that " "your TRT version is no less than 6.0")); #endif } }; } // namespace tensorrt } // namespace inference } // namespace paddle REGISTER_TRT_OP_CONVERTER(multihead_matmul, MultiheadMatMulOpConverter);