# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import random import numpy as np import paddle from paddle.fluid.framework import _test_eager_guard class TestDygraphFleetAPI(unittest.TestCase): def setUp(self): paddle.seed(2022) random.seed(2022) np.random.seed(2022) self.config() def config(self): self.dtype = "float32" self.shape = (2, 10, 5) def test_dygraph_fleet_api(self): import paddle.distributed.fleet as fleet import paddle.distributed as dist strategy = fleet.DistributedStrategy() strategy.amp = True strategy.recompute = True fleet.init(is_collective=True, strategy=strategy) net = paddle.nn.Sequential(paddle.nn.Linear(10, 1), paddle.nn.Linear(1, 2)) net = dist.fleet.distributed_model(net) data = np.random.uniform(-1, 1, [30, 10]).astype('float32') data = paddle.to_tensor(data) net(data) if __name__ == "__main__": with _test_eager_guard(): pass unittest.main()