// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/operator.h" #include "paddle/fluid/operators/math/math_function.h" #include "paddle/fluid/platform/for_range.h" namespace paddle { namespace operators { template struct DiagEmbedFunctor { DiagEmbedFunctor(const T* input, int64_t numel, const int64_t* dim, int64_t offset, int64_t dims_size, T* output, const int64_t* strides) : input_(input), numel_(numel), dim_(dim), offset_(offset), dims_size_(dims_size), output_(output), strides_(strides) {} HOSTDEVICE void operator()(size_t idx) const { int64_t position = 0; auto numel = numel_; int64_t num = idx; for (int64_t i = 0; i < dims_size_; i++) { numel = numel / dim_[i]; position += num / numel * strides_[i]; num = num % numel; } output_[position + offset_] = input_[idx]; } const T* input_; int64_t numel_; const int64_t* dim_; int64_t offset_; int64_t dims_size_; T* output_; const int64_t* strides_; }; template class DiagEmbedKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto* input = context.Input("Input"); auto* out = context.Output("Out"); const int64_t offset = context.Attr("offset"); const int64_t dim1 = context.Attr("dim1"); const int64_t dim2 = context.Attr("dim2"); auto* input_data = input->data(); T* out_data = out->mutable_data(context.GetPlace()); math::SetConstant set_zero; auto& dev_ctx = context.template device_context(); set_zero(dev_ctx, out, static_cast(0.0)); auto out_dims = out->dims(); int dim1_ = dim1 < 0 ? out_dims.size() + dim1 : dim1; int dim2_ = dim2 < 0 ? out_dims.size() + dim2 : dim2; auto stride = framework::stride(out_dims); int64_t diag_size; int64_t storage_offset = 0; if (offset >= 0) { int64_t dim = out_dims[dim2_] - offset; diag_size = std::max(std::min(out_dims[dim1_], dim), 0); } else { int64_t dim = out_dims[dim1_] + offset; diag_size = std::max(std::min(dim, out_dims[dim2_]), 0); } if (diag_size == 0) { // skip } else if (offset >= 0) { storage_offset += offset * stride[dim2_]; } else { storage_offset -= offset * stride[dim1_]; } auto strides = vectorize(stride); strides.erase(strides.begin() + std::max(dim1_, dim2_)); strides.erase(strides.begin() + std::min(dim1_, dim2_)); strides.push_back(stride[dim1_] + stride[dim2_]); const auto dims = vectorize(input->dims()); #ifdef __NVCC__ thrust::device_vector dims_vec(dims); const int64_t* dims_arr = thrust::raw_pointer_cast(dims_vec.data()); thrust::device_vector strides_vec(strides); const int64_t* strides_arr = thrust::raw_pointer_cast(strides_vec.data()); #else const int64_t* dims_arr = dims.data(); const int64_t* strides_arr = strides.data(); #endif platform::ForRange for_range(dev_ctx, input->numel()); DiagEmbedFunctor functor(input_data, input->numel(), dims_arr, storage_offset, dims.size(), out_data, strides_arr); for_range(functor); } }; } // namespace operators } // namespace paddle